Observation of Two-source Interference in the Photoproduction Reaction $Au Au \to Au Au \rho^0$

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 112301, 2009.
Inspire Record 804391 DOI 10.17182/hepdata.98964

In ultra-peripheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a $\rho^0$. The $\rho^0$ production occurs in two well-separated (median impact parameters of 20 and 40 fermi for the cases considered here) nuclei, so the system forms a 2-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing $\rho^0$ production. Since the $\rho^0$ decay before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled non-local wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is $87% \pm 5% {\rm (stat.)}\pm 8%$ (syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors, of 23% at the 90% confidence level.

7 data tables

Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.

Rapidity (left) and $M_{\pi\pi}$ (right) of the $\pi^{+}\pi^{-}$ distributions for the topology (exclusive $\rho^0$, top) and MB (Coulomb breakup, bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ’notch’ in the topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.

Raw (uncorrected) ρ0 $t_{\perp}$-spectrum in the range 0.0 < |y| < 0.5 for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term (“Int”), while the solid histogram is a simulation without interference (“NoInt”). The handful of events histogrammed at the bottom of the plot are the wrong-sign ($\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$) events, used to estimate the combinatorial background.

More…

Measurements of transverse energy distributions in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 054907, 2004.
Inspire Record 653797 DOI 10.17182/hepdata.98621

Transverse energy ($E_T$) distributions have been measured for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV by the STAR collaboration at RHIC. $E_T$ is constructed from its hadronic and electromagnetic components, which have been measured separately. $E_T$ production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of $E_T$ per charged particle agrees well with measurements at lower collision energy, indicating that the growth in $E_T$ for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total $E_T$ is consistent with a final state dominated by mesons and independent of centrality.

16 data tables

Typical MIP spectrum. The hits correspond to isolated tracks with p > 1.25 GeV/c which project to EMC towers. The peak corresponds to the energy deposited by non-showering hadrons (MIP peak).

$p/E_{tower}$ spectrum for electron candidates, selected through $dE/dx$ from the TPC, with 1.5 < p < 5.0 GeV/c. A well defined electron peak is observed. The dashed line corresponds to the hadronic background in the $dE/dx$-identified electron sample.

Upper plot: points are measured $p/E_{tower}$ electron peak position as a function of the distance to the center of the tower. The solid line is from a calculation based on a full GEANT simulation of the detector response to electrons. Lower plot: points show measured energy deposited by electrons in the tower as a function of the momentum for distances to the center of the tower smaller than 2.0 cm. The first point is the electron equivalent energy of the minimum ionizing particles. The solid line is a second order polynomial fit of the data.

More…