A set of measurements for the production of a $W$-boson in association with high-transverse-momentum jets is presented using 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC. The measurements are performed in final states in which the $W$-boson decays into an electron or muon plus a neutrino and is produced in association with jets with $p_{\text{T}}>30$ GeV, where the leading jet has $p_{\text{T}}>500$ GeV. The angular separation between the lepton and the closest jet with $p_{\text{T}}>100$ GeV is measured and used to define a collinear phase space, wherein measurements of kinematic properties of the $W$-boson and the associated jet are performed. The collinear phase space is populated by dijet events radiating a $W$-boson and events with a $W$-boson produced in association with several jets and it serves as an excellent data sample to probe higher-order theoretical predictions. Measured differential distributions are compared with predictions from state-of-the-art next-to-leading order multi-leg merged Monte Carlo event generators and a fixed-order calculation of the $W$+1-jet process computed at next-to-next-to-leading order in the strong coupling constant.
Differential distributions at reconstruction level in the (a, c) electron or (b, d) muon channel for (a, b) inclusive and (c, d) collinear signal regions after the application of the background normalisation factors. The signal process is stacked above all background predictions. The bottom panel shows the ratio of the data to the total signal plus background prediction. The shaded band includes statistical and systematic uncertainties from signal and background processes added in quadrature.
Differential distributions at reconstruction level in the (a, c) electron or (b, d) muon channel for (a, b) inclusive and (c, d) collinear signal regions after the application of the background normalisation factors. The signal process is stacked above all background predictions. The bottom panel shows the ratio of the data to the total signal plus background prediction. The shaded band includes statistical and systematic uncertainties from signal and background processes added in quadrature.
Relative systematic uncertainties in the averaged cross-section for various differential distributions in the (a, b) inclusive and (c, d) collinear phase spaces. The upper solid line shows the total uncertainty in the measured cross-section in data, and includes correlations between the systematic components. The 'Others' category contains sub-dominant uncertainties arising from missing transverse momentum reconstruction and the jet-to-vertex fraction uncertainties.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $\sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
The uncorrected SoftDrop groomed jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
The fully corrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Data are reported beyond the x-axis upper limit of the figure, for future reference. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend
The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend