STAR's measurements of directed flow ($v_1$) around midrapidity for $\pi^{\pm}$, K$^{\pm}$, K$_S^0$, $p$ and $\bar{p}$ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative $v_1(y)$ slope is observed for most of produced particles ($\pi^{\pm}$, K$^{\pm}$, K$_{S}^{0}$ and $\bar{p}$). In 5-30% central collisions a sizable difference is present between the $v_1(y)$ slope of protons and antiprotons, with the former being consistent with zero within errors. The $v_1$ excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of $v_1$ for both pions and protons, none of them can describe $v_1(y)$ for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the $v_1(y)$ slopes of protons and antiprotons.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
$v_1$ for $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$ (left panel), p and $\bar{p}$ (right panel) as a function of rapidity for 10-70$\%$ $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The lines present the linear fit to the $\pi^{\pm}$, $K^{\pm}$, $K_{S}^{0}$, p and $\bar{p}$’s $v_1$(y) respectively. Data points around $y = 0.29$ are slightly shifted horizontally to avoid overlapping.
A measurement of the J/psi and psi(2S) production cross sections in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC is presented. The data sample corresponds to an integrated luminosity of 37 inverse picobarns. Using a fit to the invariant mass and decay length distributions, production cross sections have been measured separately for prompt and non-prompt charmonium states, as a function of the meson transverse momentum in several rapidity ranges. In addition, cross sections restricted to the acceptance of the CMS detector are given, which are not affected by the polarization of the charmonium states. The ratio of the differential production cross sections of the two states, where systematic uncertainties largely cancel, is also determined. The branching fraction of the inclusive B to psi(2S) X decay is extracted from the ratio of the non-prompt cross sections to be: BR(B to psi(2S) X) = (3.08 +/- 0.12(stat.+syst.) +/- 0.13(theor.) +/- 0.42(BR[PDG])) 10^-3
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.0-0.9.
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 0.9-1.2.
The (unpolarised) acceptance corrected J/PSI cross section times branching ratio to MU+ MU- for (PROMPT) and NON-PROMPT) production in the |rapidity| bin 1.2-1.6.
A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at sqrt(s)= 7 TeV, pp to p mu^+ mu^- p, is reported using data corresponding to an integrated luminosity of 40 inverse picobarns. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum pT(mu) > 4 GeV and pseudorapidity |eta(mu)| < 2.1, a fit to the dimuon pt(mu^+ mu^-) distribution results in a measured cross section of sigma(pp to p mu^+ mu^- p) = 3.38 [+0.58 -0.55] (stat.) +/- 0.16 (syst.) +/- 0.14 (lumi.) pb, consistent with the theoretical prediction evaluated with the event generator Lpair. The ratio to the predicted cross section is 0.83 [+0.14-0.13] (stat.) +/- 0.04 (syst.) +/- 0.03 (lumi.). The characteristic distributions of the muon pairs produced via photon-photon fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.
Cross section for the for the process P P --> P MU+ MU- P.
We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\phi$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the Collins-Soper reference frame.
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.
The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.
The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.
The difference of charge-independent (CI) v2{2} and like-sign (LS) $v_2\{2\}$ for Au+Au and Cu+Cu collisions at 200 (top panel) and 62.4 (bottom panel) GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.The statistical errors are smaller than the marker size and not visible for most of the data.
Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10
The measured scaled momentum distributions for K0S production as a function of Q^2 in six XP regions.
The measured scaled momentum distributions for K0S production as a function of XP in five Q**2 regions.
The measured scaled momentum distributions for K0S production as a function of XP in two Q^2 regions.
Measurements of the normalized rapidity (y) and transverse momentum (qT) distributions of Drell-Yan muon and electron pairs in the Z-boson mass region (60
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the absolute value of rapidity of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the transverse momentum of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Covariance matrix values between the rapidity bins for the muons data sample.
The yield of charged particles associated with high-$p_{\rm T}$ trigger particles ($8 < p_{\rm T} < 15$ GeV/$c$) is measured with the ALICE detector in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta $p_{\rm T}> 3$ GeV/$c$ on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the central region.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the peripheral region.
The ratio of away-side yields in Lead-Lead/Proton-Proton collisions in the central region.
Measurements of jet production rates in association with W and Z bosons for jet transverse momenta above 30 GeV are reported, using a sample of proton-proton collision events recorded by CMS at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns. The study includes the measurement of the normalized inclusive rates of jets sigma(V + >= n jets)/sigma(V), where V represents either a W or a Z. In addition, the ratio of W to Z cross sections and the W charge asymmetry as a function of the number of associated jets are measured. A test of Berends--Giele scaling at sqrt(s) = 7 TeV is also presented. The measurements provide a stringent test of perturbative-QCD calculations and are sensitive to the possible presence of new physics. The results are in agreement with the predictions of a simulation that uses explicit matrix element calculations for final states with jets.
The ratio of the cross section for W+ n jet production over the cross section for W production in the electron channel.
The ratio of the cross section for W+ n jet production over the cross section for W production in the muon channel.
The ratio of the cross section for Z+ n jet production over the cross section for Z production in the electron channel.
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 inverse picobarns is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference, $\Delta(\phi)$, less than approximately 2.8.
Integrated diphoton cross sections.
Measured diphoton differential cross sections as a function of the diphoton mass for the two pseusdorapidity ranges.
Measured diphoton differential cross sections as a function of the diphoton transverse momentum for the two pseusdorapidity ranges.