Central collisions of 800-GeV protons with the heavy components of nuclear emulsion, Ag107 and Br80, have been investigated to determine the characteristics of small-impact-parameter collisions and, by comparison with the analysis of inclusive proton-emulsion inelastic interactions and inelastic proton-nucleon collisions, to study the dependence of the interaction process on the mean number of intranuclear collisions 〈ν〉. The data are also compared with the results obtained in proton-emulsion collisions, both central and inclusive, at 200 GeV. The variations in the secondary-particle multiplicities and the normalized pseudorapidity density correlate with 〈ν〉 and demonstrate that proton-nucleus interactions, both central and inclusive, can be described adequately by the incoherent superposition of proton-nucleon collisions.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
Central collisions of O16 nuclei with the Ag107 and Br80 nuclei in nuclear emulsion at 14.6, 60, and 200 GeV/nucleon are compared with proton-emulsion data at equivalent energies. The multiplicities of produced charged secondaries are consistent with the predictions of superposition models. At 200 GeV/nucleon the central particle pseudorapidity density is 58±2 for those events with multiplicities exceeding 200 particles.
Nucleus is average nucleus of BR-2 emulsion.
Nucleus is average nucleus of BR-2 emulsion.
Nucleus is average AG107/BR80 nucleus of BR-2 emulsion.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.
Pseudorapidity density distribution for all charged multiplicities corrected for acceptance and backgrounds by excluding NSD events. Data have been read from the plot.
.
.