Version 3
Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 142301, 2014.
Inspire Record 1292132 DOI 10.17182/hepdata.73474

In this erratum we report changes on the $D^0$ $p_T$ spectra and nuclear modification factor ($R_{AA}$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV by fixing the errors in the efficiency and selection criteria that affected the Au+Au results. The p+p reference spectrum has changed as well and is updated with new fragmentation parameters.

4 data tables

$D^0$ $p_{\rm T}$ differential invariant yield in p+p collisions (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The systematic uncertainties are shown as square brackets.

Centrality dependence of the $D^0$ $p_{\rm T}$ differential invariant yield in Au+Au collisions (solid symbols). The curves are number-of-binary-collision-scaled Levy functions from fitting to the p+p result (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The arrow denotes the upper limit with 90% confidence level of the last data point for 10$-$40% collisions. The systematic uncertainties are shown as square brackets.

Panels (ab), $D^0$ $R_{\rm AA}$ for peripheral 40$-$80% and semi a central 10$-$40% collisions; Panel (c), $D^0$ $R_{\rm AA}$ for 0$-$10% most central events (blue circles) compared with model calculations from the TAMU (solid curve), SUBATECH (dashed curve), Torino (dot-dashed curve), Duke (long-dashed and long-dot-dashed curves), and LANL groups (filled band). The open symbol indicates the result with the extrapolated p+p reference. The vertical lines and brackets around the data points denote the statistical and systematic uncertainties respectively. The vertical bars around unity denote the overall normalization uncertainties in the Au+Au and p+p data, respectively. The $R_{\rm AA}$ probability distribution for the 0$-$0.7 GeV/$c$ data point is largely skewed. The uncertainty we report is the 68.3% probability range with respect to the measured central value assuming Gaussian distribution.

More…

Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 052302, 2014.
Inspire Record 1288917 DOI 10.17182/hepdata.73457

Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

15 data tables

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 62.4 GeV.

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 39 GeV.

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 27 GeV.

More…

Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 739 (2014) 139-151, 2014.
Inspire Record 1288705 DOI 10.17182/hepdata.65772

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.

27 data tables

Mixed charge C3 and c3 in pp collisions projected against 1 of a mixed-charge pair invariant relative momentum.

Same charge C3 and c3 in pp collisions projected against Q3.

Same charge C3 and c3 in p Pb collisions projected against Q3.

More…

Event-plane dependent dihadron correlations with harmonic $v_n$ subtraction in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 89 (2014) 041901, 2014.
Inspire Record 1288534 DOI 10.17182/hepdata.97120

STAR measurements of dihadron azimuthal correlations ($\Delta\phi$) are reported in mid-central (20-60\%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_{s}=|\phi_{t}-\psi_{\rm EP}|$. The elliptic ($v_2$), triangular ($v_3$), and quadratic ($v_4$) flow harmonic backgrounds are subtracted using the Zero Yield At Minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side ($|\Delta\phi|<\pi/2$) long-range pseudorapidity correlation (ridge) is present in the in-plane direction ($\phi_{s}\sim 0$). The away-side ($|\Delta\phi|>\pi/2$) correlation shows a modification from d+Au data, varying with $\phi_{s}$. The modification may be a consequence of pathlength-dependent jet-quenching and may lead to a better understanding of high-density QCD.

58 data tables

raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.

raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.

raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.

More…

K*(892)^0 and PHI(1020) production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 91 (2015) 024609, 2015.
Inspire Record 1288320 DOI 10.17182/hepdata.66630

The yields of the K*(892)$^{0}$ and $\Phi$(1020) resonances are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (|$y$|<0.5) in the transverse-momentum ranges 0.3 < $p_{\rm T}$ < 5 GeV/$c$ for the K*(892)$^{0}$ and 0.5 < $p_{\rm T}$ < 5 GeV/$c$ for the $\Phi$(1020). The yields of K*(892)$^{0}$ are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer lived $\Phi$(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the $p_{\rm T}$ distribution of the $\Phi$(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate $p_{\rm T}$, the p/$\Phi$(1020) ratio is flat in $p_{\rm T}$, while the p/$\pi$ and $\Phi$(1020)/$\pi$ ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the $p_{\rm T}$ distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, $\Phi$(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the $\Lambda$ and $\Xi$.

36 data tables

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 0.0-20.0%.

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 20.0-40.0%.

Transverse-momentum distributions of (K*(892)0 + anti-K*(892)0)/2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV, centrality 40.0-60.0%.

More…

Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 92 (2015) 014904, 2015.
Inspire Record 1286656 DOI 10.17182/hepdata.96391

We present results of analyses of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ($m_{T}$) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

43 data tables

Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. HHLW Radii uncorrected for resolution and binning for $R_{out}$.

Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. HHLW Radii for resolution and binning for $R_{out}$, $R_{side}$, $R_{long}$, $R_{os}$, and $R_{ol}$ respectively.

Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. Radius values according to global fit of Fourier Coefficients for $R_{out}$, $R_{side}$, $R_{long}$, $R_{os}$, and $R_{ol}$ respectively.

More…

Measurement of quarkonium production at forward rapidity in pp collisions at sqrt{s}= 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Abramyan, Armenuhi ; Adam, Jaroslav ; et al.
Eur.Phys.J.C 74 (2014) 2974, 2014.
Inspire Record 1285950 DOI 10.17182/hepdata.65214

The inclusive production cross sections at forward rapidity of J/$\psi$, $\psi$(2S), $\Upsilon$(1S) and $\Upsilon$(2S) are measured in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE detector at the LHC. The analysis is based in a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\mu^+\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the ranges $0 < p_{\rm T} < 20$ GeV/$c$ for J/$\psi$, $0 < p_{\rm T} < 12$ GeV/$c$ for all other resonances and for $2.5 < y < 4$. The measured cross sections integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are: $\sigma_{J/\psi} = 6.69 \pm 0.04 \pm 0.63$ $\mu$b, $\sigma_{\psi^{\prime}} = 1.13 \pm 0.07 \pm 0.14$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 54.2 \pm 5.0 \pm 6.7$ nb and $\sigma_{\Upsilon{\rm (2S)}} = 18.4 \pm 3.7 \pm 2.2$ nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.

14 data tables

Differential production cross sections of J/psi as a function of pT.

Differential production cross sections of J/psi as a function of rapidity.

integrated production cross section of J/psi.

More…

Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

45 data tables

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

More…

Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 064904, 2014.
Inspire Record 1280745 DOI 10.17182/hepdata.96269

We report on the first measurement of the azimuthal anisotropy ($v_2$) of dielectrons ($e^{+}e^{-}$ pairs) at mid-rapidity from $\sqrt{s_{_{NN}}} = 200$ GeV Au+Au collisions with the STAR detector at RHIC, presented as a function of transverse momentum ($p_T$) for different invariant-mass regions. In the mass region $M_{ee}\!<1.1$ GeV/$c^2$ the dielectron $v_2$ measurements are found to be consistent with expectations from $\pi^{0}$, $\eta$, $\omega$ and $\phi$ decay contributions. In the mass region $1.1\!<M_{ee}\!<2.9$ GeV/$c^2$, the measured dielectron $v_2$ is consistent, within experimental uncertainties, with that from the $c\bar{c}$ contributions.

17 data tables

The dielectron $v_2$ in the $\pi^0$ Dalitz decay region as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Expected dielectron $v_2$ from $\pi^0$ Dalitz decay as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

The dielectron $v_2$ as a function of $p_T$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for the $\pi^0$ mass region.

More…

Beam-Energy Dependence of Directed Flow of Protons, Antiprotons and Pions in Au+Au Collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 162301, 2014.
Inspire Record 1277069 DOI 10.17182/hepdata.105867

Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). At intermediate impact parameters, the proton and net-proton slope parameter $dv_1/dy|_{y=0}$ shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton $dv_1/dy|_{y=0}$ changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

6 data tables

Directed flow for protons versus rapidity for central (0-10$\%$), intermediate-centrality (10-40$\%$) and peripheral (40-80$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

Directed flow for $\pi^{-}$ versus rapidity for central (0-10$\%$), intermediate-centrality (10-40$\%$) and peripheral (40-80$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

Directed flow for protons and anti-protons versus rapidity for intermediate-centrality (10-40$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

More…