Date

Diffractive photoproduction of dijetsin $ep$ collisions at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 55 (2008) 177-191, 2008.
Inspire Record 763404 DOI 10.17182/hepdata.63789

Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.

15 data tables

Differential cross section DSIG/DY for diffractive photoproduction of dijets as a function of Y.

Differential cross section DSIG/DM(P=5_6_7) for diffractive photoproduction of dijets as a function of M(P=5_6_7).

Differential cross section DSIG/DX(NAME=POMERON) for diffractive photoproduction of dijets as a function of X(NAME=POMERON).

More…

Observation of $WZ$ Production

The CDF collaboration Abulencia, A. ; Adelman, Jahred A. ; Affolder, Anthony Allen ; et al.
Phys.Rev.Lett. 98 (2007) 161801, 2007.
Inspire Record 744786 DOI 10.17182/hepdata.42741

We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7 +/- 0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to six standard deviations. The measured cross section is sigma(ppbar -> WZ) = 5.0^{+1.8}_{-1.6} pb, consistent with the standard model expectation.

1 data table

Measured cross section.


Measurement of the Inclusive Jet Cross Section using the k(T) algorithm in p anti-p collisions at s**(1/2) = 1.96-TeV with the CDF II Detector

The CDF collaboration Abulencia, A. ; Adelman, Jahred A. ; Affolder, Anthony Allen ; et al.
Phys.Rev.D 75 (2007) 092006, 2007.
Inspire Record 743342 DOI 10.17182/hepdata.41748

We report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in pp-bar collisions at sqrt{s} = 1.96 TeV}, using the k_T algorithm and a data sample corresponding to 1.0 fb^-1 collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |yjet| < 2.1 and transverse momentum in the range 54 < \ptjet < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

7 data tables

Measured inclusive jet differential cross section as a function of PT for the rapidity range -0.1 to 0.1 with the jet resolution parameter D = 0.7.

Measured inclusive jet differential cross section as a function of PT for the absoloute rapidity range 0.1 to 0.7 with the jet resolution parameter D = 0.7.

Measured inclusive jet differential cross section as a function of PT for the absolute rapidity range 0.7 to 1.1 with the jet resolution parameter D = 0.7.

More…

Measurement of the b jet cross-section in events with a Z boson in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Abulencia, A. ; Acosta, Darin E. ; Adelman, Jahred A. ; et al.
Phys.Rev.D 74 (2006) 032008, 2006.
Inspire Record 717572 DOI 10.17182/hepdata.41805

A measurement of the inclusive bottom jet cross section is presented for events containing a $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the Collider Detector at Fermilab. $Z$ bosons are identified in their electron and muon decay modes, and $b$ jets with $E_T>20$ GeV and $|\eta|&lt;1.5$ are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 ${\rm pb}^{-1}$. A cross section times branching ratio of $\sigma (Z+b {\rm jets}) \times {\cal B}(Z \to \ell^+ \ell^-)= 0.93 \pm 0.36$ pb is found, where ${\cal B}(Z\to \ell^+ \ell^-)$ is the branching ratio of the $Z$ boson or $\gamma^*$ into a single flavor dilepton pair ($e$ or $\mu$) in the mass range between 66 and 116 GeV$/c^2$. The ratio of $b$ jets to the total number of jets of any flavor in the $Z$ sample, within the same kinematic range as the $b$ jets, is $2.36 \pm 0.92%$. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with NLO QCD agree, within experimental and theoretical uncertainties, with these measurements.

7 data tables

B-jet cross section for the di-letpon mass from 66 to 116 GeV.

Ratio of the b-jet cross section to the inclusive Z0 cross section.

Ratio of the b-jet cross section to the generic jet cross section.

More…

Measurement of the deuteron spin structure function g1(d)(x) for 1-(GeV/c)**2 < Q**2 < 40-(GeV/c)**2.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 463 (1999) 339-345, 1999.
Inspire Record 496268 DOI 10.17182/hepdata.41630

New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 &lt; x &lt; 0.9 and 1 &lt; Q^2 &lt; 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.

4 data tables

Extrapolation to the full x range was made using E154 data (see PL 405B, 180 and PRL 79, 26).

Measurments of g1/F1 and g1 using the 2.75 degree spectrometer.

Measurments of g1/F1 and g1 using the 5.5 degree spectrometer.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Deep Inelastic Scattering of Polarized Electrons by Polarized $^3$He and the Study of the Neutron Spin Structure

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.D 54 (1996) 6620-6650, 1996.
Inspire Record 424108 DOI 10.17182/hepdata.22340

The neutron longitudinal and transverse asymmetries $A^n_1$ and $A^n_2$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^3$He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions $g^n_1 (x,Q^2)$ and $g^n_2(x,Q^2)$ over the range $0.03 < x < 0.6$ at an average $Q^2$ of 2 (GeV$/c)^2$. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function $g^n_1 (x,Q^2)$ is small and negative within the range of our measurement, yielding an integral ${\int_{0.03}^{0.6} g_1^n(x) dx}= -0.028 \pm 0.006 (stat) \pm 0.006 (syst) $. Assuming Regge behavior at low $x$, we extract $\Gamma_1^n=\int^1_0 g^n_1(x)dx = -0.031 \pm 0.006 (stat)\pm 0.009 (syst) $. Combined with previous proton integral results from SLAC experiment E143, we find $\Gamma_1^p - \Gamma_1^n = 0.160 \pm 0.015$ in agreement with the Bjorken sum rule prediction $\Gamma^p_1 - \Gamma ^n_1 = 0.176 \pm 0.008$ at a $Q^2$ value of 3 (GeV$/c)^2$ evaluated using $\alpha_s = 0.32\pm 0.05$.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Measurement of the proton and deuteron spin structure function g2 and asymmetry A2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 76 (1996) 587-591, 1996.
Inspire Record 400029 DOI 10.17182/hepdata.19584

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.

8 data tables

Proton data measured in the 4.5 degree spectrometer.

Proton data measured in the 7.0 degree spectrometer.

Deuteron data measured in the 4.5 degree spectrometer.

More…

Precision measurement of the deuteron spin structure function g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 75 (1995) 25-28, 1995.
Inspire Record 393667 DOI 10.17182/hepdata.19611

We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029<x<0.8 and 1<Q2<10 (GeV /c)2. The integral γ1d=∫1g1ddx evaluated at fixed Q2=3 (GeV /c)2 gives 0.042±0.003(stat)±0.004(syst). Combining this result with our earlier measurement of g1p, we find γ1p−γ1n=0.163±0.010(stat)±0.016(syst), which agrees with the prediction of the Bjorken sum rule with O(αs3) corrections, γ1p−γ1n=0.171±0.008. We find the quark contribution to the proton helicity to be Δq=0.30±0.06.

2 data tables

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.