Date

Collaboration

Subject_areas

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Version 2
Search for squarks and gluinos in final states with hadronically decaying $\tau$-leptons, jets, and missing transverse momentum using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 012009, 2019.
Inspire Record 1688943 DOI 10.17182/hepdata.84426

A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying $\tau$-lepton is presented. Two exclusive final states with either exactly one or at least two $\tau$-leptons are considered. The analysis is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with $\tau$-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of $\tan\beta$ in the range $2 \leq \tan\beta \leq 60$, and below 120 TeV for $\tan\beta>30$.

52 data tables

1$\tau$ Compressed SR eff.

1$\tau$ MediumMass SR eff.

2$\tau$ Compressed SR eff.

More…

Search for heavy charged long-lived particles in proton-proton collisions at $\sqrt{s} = 13$ TeV using an ionisation measurement with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 788 (2019) 96-116, 2019.
Inspire Record 1686832 DOI 10.17182/hepdata.83962

This Letter presents a search for heavy charged long-lived particles produced in proton-proton collisions at $\sqrt{s} = 13$ TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of $R$-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and gluino masses are set, assuming the gluino always decays in two quarks and a stable neutralino. $R$-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable $R$-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV.

26 data tables

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

The number of events in each CR, VR, and SR for the predicted background, for the expected contribution from the signal model normalised to $36.1$ fb$^{-1}$, and in the observed data. The predicted background includes the statistical and systematic uncertainties, respectively. The uncertainty in the signal yield includes all systematic uncertainties except that in the theoretical cross-section.

Expected number of $R$-hadron signal events at different stages of the selection, normalised to $36.1$ fb$^{-1}$. Shown for three different signal points is the number of events expected and the number of events expected in which the selected track has been matched to a generated $R$-hadron. If the gluino decays, it decays to a 100 GeV $\tilde{\chi}^{0}$ and SM quarks.

More…

Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 625, 2018.
Inspire Record 1675352 DOI 10.17182/hepdata.81726

A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.

43 data tables

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-low. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1200 GeV and m(neutralino1) = 900 GeV is overlaid.

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-med. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1600 GeV and m(neutralino1) = 900 GeV, and from an on-$Z$ model with m(gluino) = 1640 GeV and m(neutralino1) = 1160 GeV, is overlaid.

Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-high. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1800 GeV and m(neutralino1) = 500 GeV, and from an on-$Z$ model with m(gluino) = 1650 GeV and m(neutralino1) = 550 GeV, is overlaid.

More…

Version 4
Search for Supersymmetry in final states with missing transverse momentum and multiple $b$-jets in proton--proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2018) 107, 2018.
Inspire Record 1634607 DOI 10.17182/hepdata.79060

A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks into the lightest neutralino ($\displaystyle\tilde\chi^0_1$) is reported. It uses LHC proton--proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from $b$-quarks. To increase the sensitivity, the sample is divided into subsamples based on the presence or absence of electrons or muons. No excess is found above the predicted background. For $\displaystyle\tilde\chi^0_1$ masses below approximately 300 GeV, gluino masses of less than 1.97 (1.92) TeV are excluded at 95% confidence level in simplified models involving the pair production of gluinos that decay via top (bottom) squarks. An interpretation of the limits in terms of the branching ratios of the gluinos into third-generation squarks is also provided. These results improve upon the exclusion limits obtained with the 3.2 fb$^{-1}$ of data collected in 2015.

83 data tables

Observed 95% CL exclusion contour for Gtt model.

Expected 95% CL exclusion contour for Gtt model.

Observed 95% CL exclusion contour for Gbb model.

More…

Version 2
Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 96 (2017) 112010, 2017.
Inspire Record 1620206 DOI 10.17182/hepdata.78218

The results of a search for squarks and gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded during 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 $fb^{-1}$. No significant excess beyond the expected background is found. Exclusion limits at 95% confidence level are set in a number of supersymmetric scenarios, reaching masses up to 2.1 TeV for gluino pair production and up to 1.25 TeV for squark pair production.

71 data tables

Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.

Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model.

Observed 95% CL exclusion contours for the gluino one-step variable-x model.

More…

Version 2
Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13 TeV $pp$ collisions

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 034, 2017.
Inspire Record 1615205 DOI 10.17182/hepdata.77893

A search is presented for particles that decay producing a large jet multiplicity and invisible particles. The event selection applies a veto on the presence of isolated electrons or muons and additional requirements on the number of b-tagged jets and the scalar sum of masses of large-radius jets. Having explored the full ATLAS 2015-2016 dataset of LHC proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$, which corresponds to 36.1 fb$^{-1}$ of integrated luminosity, no evidence is found for physics beyond the Standard Model. The results are interpreted in the context of simplified models inspired by R-parity-conserving and R-parity-violating supersymmetry, where gluinos are pair-produced. More generic models within the phenomenological minimal supersymmetric Standard Model are also considered.

126 data tables

Post-fit yields for each signal region in the multijets analysis. Summary of all 27 signal regions (post-fit).

Observed 95% CL limit for the pMSSM grid.

Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.

More…

Version 3
Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using $\sqrt{s}$ = 13 Tev proton-proton collision data

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 088, 2017.
Inspire Record 1597123 DOI 10.17182/hepdata.77491

A search for new phenomena in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three $b$-tagged jets is presented. The search uses 36.1 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. The dominant sources of background are estimated using parameterized extrapolations, based on observables at medium jet multiplicity, to predict the $b$-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits are extracted constraining four simplified models of $R$-parity-violating supersymmetry that feature either gluino or top-squark pair production. The exclusion limits reach as high as 2.1 TeV in gluino mass and 1.2 TeV in top-squark mass in the models considered. In addition, an upper limit is set on the cross-section for Standard Model $t\bar{t}t\bar{t}$ production of 60 fb (6.5 $\times$ the Standard Model prediction) at 95% confidence level. Finally, model-independent limits are set on the contribution from new phenomena to the signal-region yields.

43 data tables

The expected background and observed data with five jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.

The expected background and observed data with six jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.

The expected background and observed data with seven jets in the different b-tag multiplicity bins for the 40 GeV jet pT threshold. The background shown is estimated by including all bins in the fit.

More…

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 052009, 2016.
Inspire Record 1469069 DOI 10.17182/hepdata.74125

The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.

60 data tables

Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

More…

Search for supersymmetry in pp collisions at sqrt(s) = 13 TeV in the single-lepton final state using the sum of masses of large-radius jets

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 122, 2016.
Inspire Record 1459054 DOI 10.17182/hepdata.77195

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single, high transverse momentum lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.3 inverse femtobarns at sqrt(s) = 13 TeV, recorded by the CMS experiment at the LHC. The search focuses on processes leading to high jet multiplicities, such as gluino pair production with gluinos to t t-bar neutralino[1]. The quantity M[J], defined as the sum of the masses of the large-radius jets in the event, is used in conjunction with other kinematic variables to provide discrimination between signal and background and as a key part of the background estimation method. The observed event yields in the signal regions in data are consistent with those expected for standard model backgrounds, estimated from control regions in data. Exclusion limits are obtained for a simplified model corresponding to gluino pair production with three-body decays into top quarks and neutralinos. Gluinos with a mass below 1600 GeV are excluded at a 95% confidence level for scenarios with low neutralino[1] mass, and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about 1300 GeV. For models with two-body gluino decays producing on-shell top squarks, the excluded region is only weakly sensitive to the top squark mass.

12 data tables

Event yields obtained from simulated event samples, as the event selection criteria are applied. The category Other includes Drell-Yan, $t\bar{t}H(\rightarrow b\bar{b})$, $t\bar{t}t\bar{t}$, $WZ$, and $WW$. The yields for $t\bar{t}$ events in fully hadronic final states are included in the QCD multijet category. The category $t\bar{t}{\rm V}$ includes $t\bar{t}W$, $t\bar{t}Z$, and $t\bar{t}\gamma$. The benchmark signal models, T1tttt(NC) and T1tttt(C), are described in Section 3. The event selection requirements listed above the horizontal line in the middle of the table are defined as the baseline selection. The background estimates before the $H_{T}$ requirement are not specified because some of the simulated event samples do not extend to the low $H_{T}$ region. Given the size of the MC samples described in Section 3, rows with zero yield have statistical uncertainties of at most 0.16 events, and below 0.05 events in most cases.

Observed and predicted event yields for the signal regions (R4) and background regions (R1--R3) in data (2.3 $\textrm{fb}^{-1}$) in 200<MET<400 GeV region. Expected yields for the two SUSY T1tttt benchmark scenarios are also given. The results from two types of fits are reported: the predictive fit (PF) and the version of the global fit (GF) performed under the assumption of the null hypothesis ($r=0$). The predictive fit uses the observed yields in regions R1, R2, and R3 only and is effectively just a propagation of uncertainties. The global fit uses all four regions. The values of $\kappa$ obtained from the simulation fit are also listed. The first uncertainty in $\kappa$ is statistical, while the second corresponds to the total systematic uncertainty.

Observed and predicted event yields for the signal regions (R4) and background regions (R1--R3) in data (2.3 $\textrm{fb}^{-1}$) in MET>400 GeV region. Expected yields for the two SUSY T1tttt benchmark scenarios are also given. The results from two types of fits are reported: the predictive fit (PF) and the version of the global fit (GF) performed under the assumption of the null hypothesis ($r=0$). The predictive fit uses the observed yields in regions R1, R2, and R3 only and is effectively just a propagation of uncertainties. The global fit uses all four regions. The values of $\kappa$ obtained from the simulation fit are also listed. The first uncertainty in $\kappa$ is statistical, while the second corresponds to the total systematic uncertainty.

More…