The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.
Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.
The measurements of the production of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$, and ${{\rm D^+_s}}$ mesons in proton--proton (pp) collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector at the Large Hadron Collider (LHC) are reported. D mesons were reconstructed at mid-rapidity ($|y|<0.5$) via their hadronic decay channels ${\rm D}^0 \to {\rm K}^-\pi^+$, ${\rm D}^+\to {\rm K}^-\pi^+\pi^+$, ${\rm D}^{*+} \to {\rm D}^0 \pi^+ \to {\rm K}^- \pi^+ \pi^+$, ${\rm D^{+}_{s}\to \phi\pi^+\to K^{+} K^{-} \pi^{+}}$, and their charge conjugates. The production cross sections were measured in the transverse momentum interval $0<p_{\rm T}<36~\mathrm{GeV}/c$ for ${\rm D^0}$, $1<p_{\rm T}<36~\mathrm{GeV}/c$ for ${\rm D^+}$ and ${\rm D^{*+}}$, and in $2<p_{\rm T}<24~\mathrm{GeV}/c$ for ${{\rm D^+_s}}$ mesons. Thanks to the higher integrated luminosity, an analysis in finer $p_{\rm T}$ bins with respect to the previous measurements at $\sqrt{s}=7$ TeV was performed, allowing for a more detailed description of the cross-section $p_{\rm T}$ shape. The measured $p_{\rm T}$-differential production cross sections are compared to the results at $\sqrt{s}=7$ TeV and to four different perturbative QCD calculations. Its rapidity dependence is also tested combining the ALICE and LHCb measurements in pp collisions at $\sqrt{s}=5.02$ TeV. This measurement will allow for a more accurate determination of the nuclear modification factor in p-Pb and Pb-Pb collisions performed at the same nucleon-nucleon centre-of-mass energy.
$p_{\rm T}$-differential cross section of prompt $\rm{D}^{0}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{0}\rightarrow K\pi$ : 0.0389.
$p_{\rm T}$-differential cross section of prompt $\rm{D^{+}}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm D^{+-}\rightarrow K{\rm{\pi}}{\rm{\pi}}$ : 0.0898.
$p_{\rm T}$-differential cross section of prompt $\rm D^{*}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{*+}\rightarrow \rm{D}^{0}\pi\rightarrow K\pi\pi$ : 0.02633.
The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.
Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.
Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.
The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.
The production cross sections of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$ were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=7$ TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays ${\rm D}^0 \to {\rm K}^-\pi^+$, ${\rm D}^+\to {\rm K}^-\pi^+\pi^+$, ${\rm D}^{*+} \to {\rm D}^0 \pi^+$, ${\rm D_s^{+}\to \phi\pi^+\to K^-K^+\pi^+}$, and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum ($p_{\rm T}$) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total $\rm c\overline c$ production cross section is likewise improved. The measured $p_{\rm T}$-differential cross sections are compared with the results of three perturbative QCD calculations.
$p_{\rm T}$-differential cross section of prompt $\rm{D}^{0}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{0}\rightarrow K\pi$ : 0.0393.
$p_{\rm T}$-differential cross section of prompt $\rm{D^{+}}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm D^{+-}\rightarrow K{\rm{\pi}}{\rm{\pi}}$ : 0.0946.
$p_{\rm T}$-differential cross section of prompt $\rm D^{*}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{*+}\rightarrow \rm{D}^{0}\pi\rightarrow K\pi\pi$ : 0.0266.
The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.
pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.
pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.
First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.
The production of the prompt charmed mesons $D^0$, $D^+$ and $D^{*+}$ relative to the reaction plane was measured in Pb-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the LHC. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse momentum ($p_{\rm T}$) interval of 2-16 GeV/$c$. The azimuthal anisotropy is quantified in terms of the second coefficient $v_2$ in a Fourier expansion of the D meson azimuthal distribution, and in terms of the nuclear modification factor $R_{\rm AA}$, measured in the direction of the reaction plane and orthogonal to it. The $v_2$ coefficient was measured with three different methods and in three centrality classes in the interval 0-50%. A positive $v_2$ is observed in mid-central collisions (30-50% centrality class), with an mean value of $0.204_{-0.036}^{+0.099}$ (tot.unc.) in the interval $2 < p_{\rm T} < 6$ GeV/$c$, which decreases towards more central collisions (10-30% and 0-10% classes). The positive $v_2$ is also reflected in the nuclear modification factor, which shows a stronger suppression in the direction orthogonal to the reaction plane for mid-central collisions. The measurements are compared to theoretical calculations of charm quark transport and energy loss in high-density strongly-interacting matter at high temperature. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. However, they are challenged to simultaneously describe the strong suppression of high-$p_{\rm T}$ yield of D mesons in central collisions and their azimuthal anisotropy in non-central collisions.
Prompt D^0 meson v2 as a function of pT for centrality 0-10%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 10-30%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 30-50%. The first systematic uncertainty is from the data and the second from the B feed-down.