A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category in tZq events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tW}}^{\mathrm{I}}$ is set to unity are plotted separately.
Distribution of the discretized $c_{\mathrm{tZ}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tZ}}^{\mathrm{I}}$-like category in $t\bar{t}Z$ events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tZ}}^{\mathrm{I}}$ is set to unity are plotted separately.
Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category, compared with the predictions obtained when all fit parameters are set to their maximum likelihood value in the linear fit.
A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies $\sqrt{s}$ = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb$^{-1}$. Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant WWZ production and ZH production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 $^{+0.34}_{-0.29}$ and 1.74 $^{+0.71}_{-0.60}$ are measured for $\sqrt{s}$ = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for $\sqrt{s}$ = 13.6 TeV, thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 $^{+0.31}_{-0.28}$, with an observed (expected) significance of 4.5 (5.0) standard deviations.
Two-dimensional likelihood scan as a function of the individual WWZ and ZH signal strength parameters for the combined Run 2 and Run 3 datasets
One-dimensional likelihood scan as a function of the inclusive (WWZ + ZH) signal strength parameter for the combined Run 2 and Run 3 datasets
Comparison of the observed number of events to the SM-predicted number of events for each of the bins included in the fit for Run 2 (upper row) and Run 3 (lower row). The SM expectations are shown before performing the fit. The horizontal axis legend also indicates "WWZ-like" and "ZH-like" bins defined based on whether the WWZ BDT score is higher or lower than the ZH score.
This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV by the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}\eta\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$\sigma$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.
proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $σ_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Differential fiducial cross sections for pT of the Higgs boson
Example description
Differential fiducial cross sections for rapidity of the Higgs boson
This Letter presents measurements of long-range transverse-momentum correlations using a new observable, $v_{0}(p_\mathrm{T})$, which serves as a probe of radial flow and medium properties in heavy-ion collisions. Results are reported for inclusive charged particles, pions, kaons, and protons across various centrality intervals in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, recorded by the ALICE detector. A pseudorapidity-gap technique, similar to that used in anisotropic-flow studies, is employed to suppress short-range correlations. At low $p_\mathrm{T}$, a characteristic mass ordering consistent with hydrodynamic collective flow is observed. At higher $p_\mathrm{T}$ ($> 3$ GeV/$c$), protons exhibit larger $v_{0}(p_\mathrm{T})$ than pions and kaons, in agreement with expectations from quark-recombination models. These results are sensitive to the bulk viscosity and the equation of state of the QCD medium formed in heavy-ion collisions.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 10$–$20% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 30$–$40% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 60$–$70% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
Heavy-flavor quarks produced in proton-proton (pp) collisions provide a unique opportunity to investigate the evolution of quark-initiated parton showers from initial hard scatterings to final-state hadrons. By examining jets that contain heavy-flavor hadrons, this study explores the effects of both perturbative and non-perturbative QCD on jet formation and structure. The angular differences between various jet axes, $\Delta R_{\rm axis}$, offer insight into the radiation patterns and fragmentation of charm quarks. The first measurement of D$^{0}$-tagged jet axes differences in pp collisions at $\sqrt{s}=5.02$ TeV by the ALICE experiment at the LHC is presented for jets with transverse momentum $p_{\rm T}^{\rm ch~jet} \geq 10$${\rm GeV}/c$ and D$^0$ mesons with $p_{\rm T}^{\rm D^{0}} \geq 5$${\rm GeV}/c$. In this D$^0$-meson-tagged jet measurement, three jet axis definitions, each with different sensitivities to soft, wide-angle radiation, are used: the Standard axis, Soft Drop groomed axis, and Winner-Takes-All axis. Measurements of the radial distributions of D$^0$ mesons with respect to the jet axes, $\Delta R_{\mathrm{axis-D^0}}$, are reported, along with the angle, $\Delta R_{\mathrm{axis}}$, between the three jet axes. The D$^{0}$ meson emerges as the leading particle in these jets, closely aligning with the Winner-Takes-All axis and diverging from the Standard jet axis. The results also examine how varying the sensitivity to soft radiation with grooming influences the orientation of the Soft Drop jet axis, and uncover that charm-jet structure is more likely to survive grooming when the Soft Drop axis is further from the D$^{0}$ direction, providing further evidence of the dead-cone effect recently measured by ALICE.
$\Delta R_{\rm axis}$ distribution for $\rm STD-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm WTA-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm STD-WTA$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
Femtoscopy of non-identical particle pairs has been instrumental for precision measurements of both two-particle sources and the final-state interactions in high-energy elementary and heavy-ion collisions. The majority of measurements assessing the source properties are based on identical particle pairs, providing direct access to the characteristics of the single-particle source. The work in this paper demonstrates, via femtoscopy measurements of charged pion-deuteron pairs in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, the feasibility of accessing the characteristics of the single-particle femtoscopic source by using particle pairs with large mass differences such as pions and deuterons. The first experimental results of the measurement of deuteron source sizes in ultrarelativistic heavy-ion collisions are presented. The results show good agreement with the trend derived from other charged hadrons such as pions, kaons, and protons as a function of transverse mass, indicating similar source properties
pion-deuteron (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].
Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.
Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.
The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.
This paper presents a study of the inclusive forward $J/ψ$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} =13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative $J/ψ$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|η| < 1$. The $J/ψ$ mesons are reconstructed via their decay into $μ^+ μ^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the $J/ψ$ rapidity region. The results show a steeper-than-linear increase of the $J/ψ$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.
The first measurement of prompt D$^{*+}$-meson spin alignment in ultrarelativistic heavy-ion collisions with respect to the direction orthogonal to the reaction plane is presented. The spin alignment is quantified by measuring the element $ρ_{00}$ of the diagonal spin-density matrix for prompt D$^{*+}$ mesons with $4<p_{\rm T}<30$ GeV/$c$ in two rapidity intervals, $|y|<0.3$ and $0.3<|y|<0.8$, in central ($0-10$%) and midcentral ($30-50$%) Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Evidence of spin alignment $ρ_{00}>1/3$ has been found for $p_{\rm T}>15$ GeV/$c$ and $0.3<|y|<0.8$ with a significance of $3.1σ$. The measured spin alignment of prompt D$^{*+}$ mesons is compared with the one of inclusive J$/ψ$ mesons measured at forward rapidity ($2.5 < y < 4$).
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.3 < |y| < 0.8$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for central (0--10\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.