K0 production in one prong tau decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 219-227, 1994.
Inspire Record 373752 DOI 10.17182/hepdata.68011

From a sample of about 75000 τ decays identified with the ALEPH detector, K 0 production in 1-prong hadronic decays is investigated by tagging the K L 0 component in a hadronic calorimeter. Results are given for the final states ν τ h − K 0 and ν τ h − π 0 K 0 where the h − is separated into π and K contributions by means of the dE / dx measurement in in the central detector. The resulting branching ratios are: ( Bτ → ν τ π − K 0 ) = (0.88±0.14±0.09)%, ( Bτ → ν τ K − K 0 ) = (0.29±0.12±0.03)%, ( Bτ → ν τ π − π 0 K 0 ) = (0.33±0.14±0.07)% aand ( Bτ → ν τ K − π 0 K 0 ) = (0.05±0.05±0.01)%. The K ∗ decay rate in the K 0 π channel agrees with that in the Kπ 0 mode: the combined value for the branching ratio is (Bτ → ν τ K ∗− ) = (1.45±0.13±0.11)% .

1 data table

Invariant mass distribution for the $K^0\pi$ system data. The numbers have been read from the plot in the paper.


One prong tau decays into charged kaons

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 332 (1994) 209-218, 1994.
Inspire Record 373751 DOI 10.17182/hepdata.68012

Form a sample of about 75000 τ decays measured in the ALEPH detector, 1-prong charged kaon decays are identified by the dE / dx measurement in the central detector. The resulting branching ratios for the inclusive and exclusive modes are: B ( τ → ν τ K − ≥ 0 π 0 ≥ 0 K 0 ) = (1.60±0.07±0.12)%, B ( τ → ν τ K − = (0.64±0.05±0.05)%, B ( τ → ν τ − π 0 = (0.53±0.05±0.07)% and B ( τ → ν τ K − π 0 π 0 ) = (0.04±0.03±0.02)%. Exclusive modes are corrected for measured K L 0 production. The rate for τ → ν τ K − agrees well with the prediction based on τ - μ universality.

1 data table

Invariant mass distribution of the $K\pi^0$ final state, as obtained from a $dE/dx$ fit in each mass bin. The numbers have been read from the plot in the paper, with the errors simply set to zero if they are smaller than the point size.


A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

4 data tables

Penetrating charged particle track selection.

Calorimeter selection.

Average cross section.

More…

Measurement of the forward - backward asymmetry in Z ---> b anti-b and Z ---> c anti-c

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 263 (1991) 325-336, 1991.
Inspire Record 316148 DOI 10.17182/hepdata.29386

From a sample of 150 000 hadronic Z decays collected with the ALEPH detector at LEP, events containing prompt leptons are used to measure the forward-backward asymmetries for the channels Z → b b and Z → c c , giving the results A FB b =0.126±0.028±0.012 and A FB c =0.064±0.039±0.030. These asymmetries correspond to the value of effective electroweak mixing angle at the Z mass sin 2 θ W ( m Z 2 ) = 0.2262±0.0053.

4 data tables

b asymmetry from high pt leptons.

b asymmetry from full pt range.

b asymmetry from full pt range.

More…

Measurement of the polarization of tau leptons produced in Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 265 (1991) 430-444, 1991.
Inspire Record 316781 DOI 10.17182/hepdata.29377

The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.

2 data tables

Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.

No description provided.


Measurement of charge asymmetry in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 259 (1991) 377-388, 1991.
Inspire Record 314476 DOI 10.17182/hepdata.29453

A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.

2 data tables

No description provided.

No description provided.


Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.


Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


Measurement of the production rates of eta and eta-prime in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Phys.Lett.B 292 (1992) 210-220, 1992.
Inspire Record 334575 DOI 10.17182/hepdata.29156

The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.

3 data tables

No description provided.

Additional 7 pct systematic error.

Additional 23 pct systematic error.


Improved measurements of electroweak parameters from Z decays into fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 53 (1992) 1-20, 1992.
Inspire Record 317141 DOI 10.17182/hepdata.14857

The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.

7 data tables

Statistical errors only.

No description provided.

No description provided.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Evidence for the triple gluon vertex from measurements of the QCD color factors in Z decay into four jets

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 151-162, 1992.
Inspire Record 333127 DOI 10.17182/hepdata.48505

None

1 data table

NC, CF, and TF are the color factors for SU(N) group. For SU(3) they are equal to: NC = 3, CF = 4/3, and TF = 1/2.


Search for CP violation in Z ---> tau tau

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Phys.Lett.B 297 (1992) 459-468, 1992.
Inspire Record 341557 DOI 10.17182/hepdata.48510

Using the 18.8 pb −1 of data accumulated at LEP in 1990 and 1991 with the ALEPH detector, a direct test of neutral current CP -invariance is performed by a search for CP -odd correlations in Z decays to τ pairs where both τ decay modes are identified. No evidence for CP -violation is observed. The weak dipole moment of the τ has been measured to be d τ ( m Z ) = (1.3 ± 1.4 ± 0.1) × 10 −17 e ·cm which results in an upper limit on the weak dipole moment of | d τ ( m Z )| ⩽ 3.7 × 10 −17 e ·cm with 95% confidence level.

1 data table

No description provided.


Production of K0 and Lambda in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 64 (1994) 361-374, 1994.
Inspire Record 375060 DOI 10.17182/hepdata.48239

Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Production of charmed mesons in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 62 (1994) 1-14, 1994.
Inspire Record 363280 DOI 10.17182/hepdata.48368

The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D

4 data tables

No description provided.

The DSYS error is due to the error in the branching ratio.

The DSYS error is due to the error in the branching ratio.

More…

Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

15 data tables

Data from 1990 running period.

Data from 1990 running period.

Data from 1990 running period.

More…

Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

Measurement of the charged particle multiplicity distribution in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 273 (1991) 181-192, 1991.
Inspire Record 319520 DOI 10.17182/hepdata.29273

The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.

2 data tables

Unfolded charged particle multiplicity distribution. The entry for N=2 is from the LUND 7.2 parton shower model.

Leading moments of the charged particle multiplicity. R2 is the second binomial moment given by MEAN(MULT(MULT-1))/(MEAN(MULT))**2.


$J/\psi$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 072301, 2012.
Inspire Record 1088222 DOI 10.17182/hepdata.60297

The ALICE experiment has measured the inclusive J/$\psi$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}} } = 2.76$ TeV down to zero transverse momentum in the rapidity range $2.5 < y < 4$. A suppression of the inclusive J/$\psi$ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0-80% most central collisions, is $0.545 \pm 0.032 \rm{(stat.)} \pm 0.083 \rm{(syst.)}$ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/$\psi$ production from charm quarks in a deconfined partonic phase can describe our data.

2 data tables

Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV/c, as a function of - the average number of participating nucleons (<Npart>), - the average number of participating nucleons (<Npart,w>) weigthed by the average number of binary collisions, - the mid-rapidity charged-particle density measured at pseudo-rapidity eta = 0 dNch,w/deta|eta=0 weigthed by the average number of binary collisions.

Centrality integrated (0%-80%) inclusive Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV as a function of rapidity for two transverse momentum ranges.


Suppression of high transverse momentum D mesons in central Pb--Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 09 (2012) 112, 2012.
Inspire Record 1093488 DOI 10.17182/hepdata.60103

The production of the prompt charm mesons $D^0$, $D^+$, $D^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy $\sqrt{s_{NN}}=2.76$ TeV per nucleon--nucleon collision. The $p_{\rm T}$-differential production yields in the range $2<p_{\rm T}<16$ GeV/c at central rapidity, $|y|<0.5$, were used to calculate the nuclear modification factor $R_{AA}$ with respect to a proton-proton reference obtained from the cross section measured at $\sqrt{s}=7$ TeV and scaled to $\sqrt{s}=2.76$ TeV. For the three meson species, $R_{AA}$ shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.

19 data tables

The transverse momentum distribution for prompt D0 mesons in the Centrality range 0-20%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

The transverse momentum distribution for prompt D0 mesons in the Centrality range 40-80%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

The transverse momentum distribution for prompt D+ mesons in the Centrality range 0-20%. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…

Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \sqrt{s} = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 86 (2012) 112007, 2012.
Inspire Record 1115824 DOI 10.17182/hepdata.59998

The differential production cross section of electrons from semileptonic heavy-flavour hadron decays has been measured at mid-rapidity ($|y| < 0.5$) in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 $<p_{\rm T}<$ 8 GeV/$c$. Predictions from a fixed order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties.

1 data table

Double differential cross section for heavy-flavour electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).


Long-range angular correlations on the near and away side in p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 719 (2013) 29-41, 2013.
Inspire Record 1206610 DOI 10.17182/hepdata.60292

Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < $p_{\rm T}^{\rm assoc}$ < $p_{\rm T}^{\rm trig}$ < 4 GeV/$c$. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and $p_{\rm T}$ bins, and the widths show no significant evolution with event multiplicity or $p_{\rm T}$. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge.

4 data tables

The Fourier coefficient V2 for different multiplicity classes and overlapping PT_trig and PT_assoc intervals. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

The Fourier coefficient V3 for different multiplicity classes and overlapping PT_trig and PT_assoc intervals. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

The near-side ridge yields per unit pseudorapidiy difference between the trigger and associated particle in regions of differing PT_trig and PT_assoc bins for different multiplicity classes. Note that all multiplicity classes have the values from the 60-100% multiplicity class subtracted.

More…

Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb--Pb Collisions at $\sqrt{s_{\rm{NN}}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 720 (2013) 52-62, 2013.
Inspire Record 1127497 DOI 10.17182/hepdata.59944

The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.

30 data tables

Normalized differential primary charged particle yield in the centrality interval 0-5%.

Normalized differential primary charged particle yield in the centrality interval 5-10%.

Normalized differential primary charged particle yield in the centrality interval 10-20%.

More…

Measurement of inelastic, single- and double-diffraction cross sections in proton--proton collisions at the LHC with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 73 (2013) 2456, 2013.
Inspire Record 1181770 DOI 10.17182/hepdata.68096

Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X < 200$ GeV/$c^2$) $\sigma_{\rm SD}/\sigma_{\rm INEL} = 0.21 \pm 0.03, 0.20^{+0.07}_{-0.08}$, and $0.20^{+0.04}_{-0.07}$, respectively at centre-of-mass energies $\sqrt{s} = 0.9, 2.76$, and 7~TeV; for double diffraction (for a pseudorapidity gap $\Delta\eta > 3$) $\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\sqrt{s} = 0.9, 2.76$, and 7~TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi)$ mb at $\sqrt{s} =$ 2.76~TeV and $73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi)$ mb at $\sqrt{s}$ = 7~TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.

5 data tables

Production ratios of SD with $M_{X} < 200 GeV/c^2$ to INEL.

Production ratios of DD with $\Delta\eta >3$ to INEL.

Single diffraction cross-section for $M_{X} < 200 GeV/c^2$.

More…