$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Centrality dependence of $\mathbf{\psi}$(2S) suppression in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2016) 050, 2016.
Inspire Record 1426826 DOI 10.17182/hepdata.73306

The inclusive production of the $\psi$(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges $-4.46<y_{\rm cms}<-2.96$ and $2.03<y_{\rm cms}<3.53$, down to zero transverse momentum, by reconstructing the $\psi$(2S) decay to a muon pair. The $\psi$(2S) production cross section $\sigma_{\psi(\rm 2S)}$ is presented as a function of the collision centrality, which is estimated through the energy deposited in forward rapidity calorimeters. The relative strength of nuclear effects on the $\psi$(2S) and on the corresponding 1S charmonium state J/$\psi$ is then studied by means of the double ratio of cross sections $[\sigma_{\psi(\rm 2S)}/\sigma_{\rm J/\psi}]_{\rm pPb}/[\sigma_{\psi(\rm 2S)}/\sigma_{\rm J/\psi}]_{\rm pp}$ between p-Pb and pp collisions, and by the values of the nuclear modification factors for the two charmonium states. The results show a large suppression of $\psi$(2S) production relative to the J/$\psi$ at backward (negative) rapidity, corresponding to the flight direction of the Pb-nucleus, while at forward (positive) rapidity the suppressions of the two states are comparable. Finally, comparisons to results from lower energy experiments and to available theoretical models are presented.

7 data tables

Centrality-differential cross section dsigma_JPsi/dy in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third uncertainty is a systematic uncertainty fully correlated over centrality.

Centrality dependence of the Psi(2S)/J/Psi ratio in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third systematic uncertainty is fully correlated over centrality.

Centrality dependence of the (Psi(2S)/J/Psi)_pA/(Psi(2S)/J/Psi)_pp double ratio in the backward and forward rapidity range (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second one is a systematic one. The third systematic uncertainty is fully correlated over centrality, but uncorrelated versus rapidity, while the fourth uncertainty is fully correlated over centrality and over rapidity.

More…

Study of Z boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 759 (2016) 36-57, 2016.
Inspire Record 1410832 DOI 10.17182/hepdata.71358

The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.

3 data tables

Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.


Measurement of an excess in the yield of J/$\psi$ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222301, 2016.
Inspire Record 1395296 DOI 10.17182/hepdata.72639

We report on the first measurement of an excess in the yield of J/$\psi$ at very low transverse momentum ($p_{\rm T}< 0.3$ GeV/$c$) in peripheral hadronic Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/$\psi$ in the rapidity range $2.5<y<4$ reaches about 7 (2) in the $p_{\rm T}$ range 0-0.3 GeV/$c$ in the 70-90% (50-70%) centrality class. The J/$\psi$ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/$\psi$ is the underlying physics mechanism. If confirmed, the observation of J/$\psi$ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the Quark-Gluon Plasma.

4 data tables

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

More…

Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.

17 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

integrated production cross section of J/$\psi$.

More…

Study of B meson production in pPb collisions at sqrt(s_NN) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

8 data tables

The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

More…

Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 542, 2015.
Inspire Record 1370682 DOI 10.17182/hepdata.68516

The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.

50 data tables

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the pseudo-rapidity of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt(b-jet) of the b-jet. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

More…