Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.


J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

5 data tables

No description provided.

No description provided.

Integrated b-quark production cross section.

More…

The Isolated photon cross-section in the central and forward rapidity regions in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 77 (1996) 5011-5015, 1996.
Inspire Record 417044 DOI 10.17182/hepdata.42312

A measurement of the cross section for production of single, isolated photons is reported for transverse energies in the range of 10-125 GeV, for two regions of pseudorapidity, |\eta|<0.9 and 1.6<|\eta|<2.5. The data represent 12.9 pb-1 of integrated luminosity accumulated in p-pbar collisions at sqrt{s} = 1.8 TeV and recorded with the D0 detector at the Fermilab Tevatron Collider.

2 data tables

Numerical values supplied by J. Womersley.

Numerical values supplied by J. Womersley.


Search for anomalous W W and W Z production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 77 (1996) 3303-3308, 1996.
Inspire Record 419962 DOI 10.17182/hepdata.42290

We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 &lt; delta kappa &lt; 1.1 (with lambda = 0) and -0.6 &lt; lambda &lt; 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.

1 data table

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.


Search for additional neutral gauge bosons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 385 (1996) 471-478, 1996.
Inspire Record 421554 DOI 10.17182/hepdata.42253

We have searched for a heavy neutral gauge boson, Z ′, using the decay channel Z ′ → ee . The data were collected with the DØ detector at the Fermilab Tevatron during the 1992–1993 p p collider run at s =1.8 TeV from an integrated luminosity of 15±1 pb −1 . Limits are set on the cross section times brancing ratio for the process p p → Z′ → ee as a function of the Z ′ mass. We exclude the existence of a Z ′ of mass less than 490 GeV/c 2 , assuming a Z ′ with the same coupling strengths to quarks and leptons as the standard model Z boson.

1 data table

No description provided.


Results from a search for a neutral scalar produced in association with a W boson in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-96-258-E, 1996.
Inspire Record 424540 DOI 10.17182/hepdata.43005

None

1 data table

The cross section limits are set using two methods. The first (C=COUNT) is a simple counting experiment, and the second (C=SHAPE) use the shape of the dij et mass spectrum input to a likelihood fit.


Search for a fourth generation charge -1/3 quark via flavor changing neutral current decay

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 3818-3823, 1997.
Inspire Record 426498 DOI 10.17182/hepdata.42251

We report on a search for pair production of a fourth generation charge -1/3 quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' quark decaying exclusively via FCNC for b' quark masses up to m(Z) + m(b).

3 data tables

Cross section times branching fraction for the gamma+3jets channel.

Cross section times branching fraction for the 2gamma+2jets channel.

No description provided.


Search for diphoton events with large missing transverse energy in p - anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 2070-2074, 1997.
Inspire Record 427309 DOI 10.17182/hepdata.42245

A search for signals of new physics has been carried out in the channel p pbar -> gamma gamma + ETmiss. This signature is expected in various recently proposed supersymmetric (SUSY) models. We observe 842 events with two photons having transverse momentum ET(g) > 12 GeV and pseudorapidity |eta(g)| < 1.1. Of these, none have missing transverse energy (ETmiss) in excess of 25 GeV. The distribution of ETmiss is consistent with that of the expected background. We therefore set limits on production cross sections for selectron, sneutrino and neutralino pairs, decaying into photons. The limits range from about 400 fb to 1 pb depending on the sparticle masses. A general limit of 185 fb (95% C.L.) is set on sigma.B(pbar p -> gamma gamma ETmiss + X) where ET(g) > 12 GeV, |eta(g)| < 1.1, and ETmiss > 25 GeV.

1 data table

$INVISIBLE means ET(missing).


Study of the Z Z gamma and Z gamma gamma couplings in Z (neutrino neutrino) gamma production

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 78 (1997) 3640-3645, 1997.
Inspire Record 440634 DOI 10.17182/hepdata.42214

We have measured the ZZ-gamma and Z-gamma-gamma couplings by studying p-bar p -> (missing ET) gamma + X events at sqrt(s)=1.8 TeV with the D0 detector at the Fermilab Tevatron Collider. This first study of hadronic Z-gamma production in the neutrino decay channel gives the most stringent limits on anomalous couplings available. A fit to the transverse energy spectrum of the photon in the candidate event sample, based on a data set corresponding to an integrated luminosity of 13.1 pb~(-1), yields 95% CL limits on the anomalous CP-conserving ZZ-gamma couplings of |h~Z_(30)|<0.9, |h~Z_(40)|<0.21, for a form-factor scale Lambda = 500 GeV. Combining these results with our previous measurement using Z -> ee and mu-mu yields the limits:|h~Z_(30)|<0.8, |h~Z_(40)|<0.19 (Lambda = 500 GeV) and |h~Z_(30)|<0.4, |h~Z_(40)|<0.06 (Lambda = 750 GeV).

1 data table

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.. The data with Z --> lepton+ lepton- is taken from S.Abachi, PRL 75, 1028.


Measurement of the top quark pair production cross-section in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 79 (1997) 1203-1208, 1997.
Inspire Record 442536 DOI 10.17182/hepdata.42194

We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.

1 data table

Different channels are used for evaluation of the cross section magnitudes. The last value is obtained from the previous one by adding the errors in quadrature.