Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.
High and low multiplicity long-range delta phi correlations
Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis
The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.
The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope $r_{3}^{\rm Norm}$ is found to be larger than zero and to have a magnitude similar to $r_{2}^{\rm Norm}$, thus pointing to a large background contribution for these measurements. Furthermore, $r_{2}^{\rm Norm}$ can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW ($f_{\rm CMW}$) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for $f_{\rm CMW}$, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.
Normalized $\Delta\it{v}_{2}$ slope of charged hadrons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of kaons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of pions as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
The measurements of the (anti)deuterons elliptic flow ($v_2$) and the first measurements of triangular flow ($v_3$) in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collisions $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are presented. A mass ordering at low transverse momentum ($p_{\rm T}$) is observed when comparing these measurements with those of other identified hadrons, as expected from relativistic hydrodynamics. The measured (anti)deuterons $v_2$ lies between the predictions from the simple coalescence and blast-wave models, which provide a good description of the data only for more peripheral and for more central collisions, respectively. The mass number scaling, which is violated for $v_2$, is approximately valid for the (anti)deuterons $v_3$. The measured $v_2$ and $v_3$ are also compared with the predictions from a coalescence approach with phase-space distributions of nucleons generated by iEBE-VISHNU with AMPT initial conditions coupled with UrQMD, and from a dynamical model based on relativistic hydrodynamics coupled to the hadronic afterburner SMASH. The model predictions are consistent with the data within the uncertainties in mid-central collisions, while a deviation is observed in central centrality intervals.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 0-5%.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 5-10%.
v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 10-20%.
Anisotropic flow coefficients, $v_n$, non-linear flow mode coefficients, $\chi_{n,mk}$, and correlations among different symmetry planes, $\rho_{n,mk}$ are measured in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval $0.2<p_\rm{T}<5.0$ GeV/$c$ within the pseudorapidity interval $0.4<|\eta|<0.8$ as a function of collision centrality. The $v_n$ coefficients and $\chi_{n,mk}$ and $\rho_{n,mk}$ are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.
Centrality dependence of flow harmonics from $v_2$ to $v_9$.
Centrality dependence of flow harmonics from $v_2$ to $v_9$.
Centrality dependence of flow harmonics from $v_2$ to $v_9$.