A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
A measurement of the multi-strange $\Xi^-$ and $\Omega^-$ baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum ($p_{\rm T}$) distributions were studied at mid-rapidity (|y| < 0.5) in the range of 0.6 < $p_{\rm T}$ < 8.5 GeV/$c$ for $\Xi^-$ and $\Xi^+$ baryons, and in the range of 0.8 < $p_{\rm T}$ < 5 GeV/$c$ for $\Omega^-$ and $\Omega^+$. Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current LHC data has allowed us to measure a difference between the mean $p_{\rm T}$ of $\Xi^-$ ($\Xi^+$) and $\Omega^-$ ($\Omega^+$). Particle yields, mean $p_{\rm T}$, and the spectra in the intermediate $p_{\rm T}$ range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for $\Omega^-$ ($\Omega^+$). This PYTHIA tune approaches the $p_{\rm T}$ spectra of $\Xi^-$ and $\Xi^+$ baryons below $p_{\rm T}$ < 0.85 GeV/$c$ and describes the $\Xi^-$ and $\Xi^+$ spectra above $p_{\rm T}$ > 6.0 GeV/$c$. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of ($\Omega^{-}+\Omega^+)/(\Xi^-+\Xi^+)$ as a function of transverse mass.
pT differential yield for OMEGA- and OMEGABAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.
pT differential yield for XI- and XIBAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.
Ratio of (OMEGA-+OMEGABAR+) to (XI-+XIBAR+) production as a function of MT-M0. Note: the binning in (mT-m0) is the consequence of the pT binning of the Omega spectra.
The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.
Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 0-5%.
Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 5-10%.
Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 10-15%.
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.
The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.
A search for the weak production of charginos and neutralinos into final states with three electrons or muons and missing transverse momentum is presented. The analysis uses 2.06 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV.
Transverse momentum distribution for the first leading lepton for events in the SR1 signal region for DATA and SM predictions.
Transverse momentum distribution for the first leading lepton for events in the SR2 signal region for DATA and SM predictions.
Transverse momentum distribution for the second leading lepton for events in the SR1 signal region for DATA and SM predictions.
A measurement of the underlying event (UE) activity in proton-proton collisions at a center-of-mass energy of 7 TeV is performed using Drell--Yan events in a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, collected by the CMS experiment at the LHC. The activity measured in the muonic final state (q q-bar to opposite-sign muons) is corrected to the particle level and compared with the predictions of various Monte Carlo generators and hadronization models. The dependence of the UE activity on the dimuon invariant mass is well described by PYTHIA and HERWIG++ tunes derived from the leading jet/track approach, illustrating the universality of the UE activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above 40 GeV, while a slow increase is observed with increasing transverse momentum of the dimuon system. The dependence of the UE activity on the transverse momentum of the dimuon system is accurately described by MADGRAPH, which simulates multiple hard emissions.
Toward $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
Transverse $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
Away $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.
Inclusive to exclusive dijet production ratio.
Mueller-Navelet to exclusive dijet production ratio.
Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.
The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.
Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4
Production cross section of negative muons from heavy-flavor mesons decay as a function of $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV.
Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in Cu+Cu collisions for three different centrality intervals (40-94%, 20-40%, and 0-20%), scaled by powers of ten for clarity. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.
Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.
Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.