Beam Energy Dependence of Triton Production and Yield Ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$) in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 130 (2023) 202301, 2023.
Inspire Record 2152917 DOI 10.17182/hepdata.133992

We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/d\eta$) and follows a scaling behavior. The $dN_{ch}/d\eta$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$\sigma$ and 3.4$\sigma$, respectively, giving a combined significance of 4.1$\sigma$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.

1 data table match query

Particle yield ratios at 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV, 0%-10% centrality


Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables match query

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables match query

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

90 data tables match query

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

More…

Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables match query

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables match query

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

99 data tables match query

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

More…

Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

332 data tables match query

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

More…

A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron

Berge, J.P. ; Burkhardt, H. ; Dydak, F. ; et al.
Z.Phys.C 49 (1991) 187-224, 1991.
Inspire Record 281286 DOI 10.17182/hepdata.1696

A high-statistics measurement of the differential cross-sections for neutrino-iron scattering in the wide-band neutrino beam at the CERN SPS is presented. Nucleon structure functions are extracted and theirQ2 evolution is compared with the predictions of quantum chromodynamics.

40 data tables match query

No description provided.

No description provided.

No description provided.

More…

LAMBDA (1520) PRODUCTION IN NEUTRON - NUCLEON INTERACTIONS AT approximately 40-GeV NEUTRON ENERGY

Krastev, V.R. ; Aleev, A.N. ; Arefev, V.A. ; et al.
JINR-P1-88-31, 1988.
Inspire Record 261871 DOI 10.17182/hepdata.9450

None

6 data tables match query

AVERAGE OVER ALL TARGETS.

No description provided.

No description provided.

More…