Date

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table

90% CL CRDM-nucleon cross sections


Measurement of charged hadron multiplicity in Au+Au collisions at $\sqrt{\text{s}_{\text{NN}}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907537 DOI 10.17182/hepdata.159879

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.

2 data tables

Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.

Nch as a function of $\eta$, presented in Figure 5.


Multiplicity-dependent inclusive J/$\psi$ production at forward rapidity in pp collisions at $\mathbf{\sqrt{s} = 13}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-070, 2025.
Inspire Record 2906995 DOI 10.17182/hepdata.159409

This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.

1 data table

Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.


Observation of WZ$\gamma$ production and constraints on new physics scenarios in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, V. ; Hayrapetyan, A. ; Makarenko, V. ; et al.
Phys.Rev.D 112 (2025) 012009, 2025.
Inspire Record 2905870 DOI 10.17182/hepdata.157601

A measurement of the WZ$\gamma$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pm\nu\ell^+\ell^-$, where $\ell$ = e or $\mu$, accompanied by an additional photon. The observed (expected) significance of the WZ$\gamma$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.

6 data tables

The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

More…

Search for cascade decays of charged sleptons and sneutrinos in final states with three leptons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012005, 2025.
Inspire Record 2901728 DOI 10.17182/hepdata.157553

A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.

64 data tables

Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

More…

Charged-hadron and identified-hadron ($K^\mathrm{0}_\mathrm{S}$, $Λ$, $Ξ^\mathrm{-}$) yield measurements in photo-nuclear Pb+Pb and $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.C 111 (2025) 064908, 2025.
Inspire Record 2898746 DOI 10.17182/hepdata.158635

This paper presents the measurement of charged-hadron and identified-hadron ($K^\mathrm{0}_\mathrm{S}$, $Λ$, $Ξ^\mathrm{-}$) yields in photo-nuclear collisions using 1.7 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb data collected in 2018 with the ATLAS detector at the Large Hadron Collider. Candidate photo-nuclear events are selected using a combination of tracking and calorimeter information, including the zero-degree calorimeter. The yields as a function of transverse momentum and rapidity are measured in these photo-nuclear collisions as a function of charged-particle multiplicity. These photo-nuclear results are compared with 0.1 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV $p$+Pb data collected in 2016 by ATLAS using similar charged-particle multiplicity selections. These photo-nuclear measurements shed light on potential quark-gluon plasma formation in photo-nuclear collisions via observables sensitive to radial flow, enhanced baryon-to-meson ratios, and strangeness enhancement. The results are also compared with the Monte Carlo DPMJET-III generator and hydrodynamic calculations to test whether such photo-nuclear collisions may produce small droplets of quark-gluon plasma that flow collectively.

28 data tables

The multiplicity distribution (#it{N}_{ch}^{rec}) from Pb+Pb photo-nuclear collisions.

The multiplicity distribution (#it{N}_{ch}^{rec}) from p+Pb collisions.

The Charged-hadron yields as a function of pT in different y selections in Pb+Pb photo-nuclear collisions.

More…

Measurement of double-differential charged-current Drell-Yan cross-sections at high transverse masses in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 026, 2025.
Inspire Record 2895869 DOI 10.17182/hepdata.157918

This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140~fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$

84 data tables

The expected EFT limits at 95% CL, shown for the linear-only electron, muon, and combined fits.

The expected EFT limits at 95% CL, shown for the linear+quadratic electron, muon, and combined fits.

The observed EFT limits at 95% CL, shown for the linear-only electron, muon, and combined fits.

More…

Investigating the p-$\pi^{\pm}$ and p-p-$\pi^{\pm}$ dynamics with femtoscopy in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-034, 2025.
Inspire Record 2895576 DOI 10.17182/hepdata.159769

The interaction between pions and nucleons plays a crucial role in hadron physics. It represents a fundamental building block of the low-energy QCD dynamics and is subject to several resonance excitations. This work studies the p-$\pi^{\pm}$ dynamics using femtoscopic correlations in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV measured by ALICE at the LHC. As the final-state interaction between protons and pions is well constrained by scattering experiments and the study of pionic hydrogen, the results give access to information on the particle-emitting source in pp collisions using the femtoscopy methods. The scaling of the source size of primordial protons and pions against their pair transverse mass is extracted. The results are compared with the source sizes studied with p-p, p-K$^+$, and $\pi^{\pm}$-$\pi^{\pm}$ pairs by ALICE in the same collision system and are found to be in agreement for the different particle pairs. This reinforces recent findings by ALICE of a common emission source for all hadron-pairs in pp collisions at LHC energies. Furthermore, the p-p-$\pi^{\pm}$ systems are studied using three-particle femtoscopy in pp collisions at $\sqrt{s} = 13$ TeV. The presence of three-body effects is analyzed utilizing the cumulant expansion method. In this formalism, the known two-body interactions are subtracted in order to isolate the three-body effects. For both, p-p-$\pi^{+}$ and p-p-$\pi^{-}$, a non-zero cumulant is found, indicating effects beyond pairwise interactions. These results give information on the coupling of the pion to multiple nucleons.

52 data tables

p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.54, 0.75)$ GeV/$c^2$

p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.75, 0.95)$ GeV/$c^2$

p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.95, 1.20)$ GeV/$c^2$

More…

Search for long-lived charged particles using large specific ionisation loss and time of flight in 140 $fb^{-1}$ of $pp$ collisions at $\sqrt{s}\ = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 140, 2025.
Inspire Record 2878503 DOI 10.17182/hepdata.158643

This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.

62 data tables

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

More…