Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at $\sqrt{s_\rm{NN}} = 5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 749 (2015) 68-81, 2015.
Inspire Record 1346963 DOI 10.17182/hepdata.68911

Charged jet production cross sections in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV measured with the ALICE detector at the LHC are presented. Using the anti-$k_{\rm T}$ algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters $R = 0.2$ and $R = 0.4$. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, $R_{\rm pPb}$, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at $\sqrt{s} = 7$ TeV. In the transverse momentum range $20 \le p_{\rm T,ch\ jet} \le 120$ GeV/$c$, $R_{\rm pPb}$ is found to be consistent with unity, indicating the absence of strong nuclear matter effects on jet production. Major modifications to the radial jet structure are probed via the ratio of jet production cross sections reconstructed with the two different resolution parameters. This ratio is found to be similar to the measurement in pp collisions at $\sqrt{s} = 7$ TeV and to the expectations from PYTHIA pp simulations and NLO pQCD calculations at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

13 data tables

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for $R = 0.2$ measured with the ALICE detector.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 calculated with a Lorentz-boosted NLO pQCD calculation using POWHEG+PYTHIA8 with CTEQ6.6+EPS09.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector. Eta-Interval 0.25 < $\eta$ < 0.65.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Measurement of quarkonium production at forward rapidity in pp collisions at sqrt{s}= 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Abramyan, Armenuhi ; Adam, Jaroslav ; et al.
Eur.Phys.J.C 74 (2014) 2974, 2014.
Inspire Record 1285950 DOI 10.17182/hepdata.65214

The inclusive production cross sections at forward rapidity of J/$\psi$, $\psi$(2S), $\Upsilon$(1S) and $\Upsilon$(2S) are measured in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE detector at the LHC. The analysis is based in a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\mu^+\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the ranges $0 < p_{\rm T} < 20$ GeV/$c$ for J/$\psi$, $0 < p_{\rm T} < 12$ GeV/$c$ for all other resonances and for $2.5 < y < 4$. The measured cross sections integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are: $\sigma_{J/\psi} = 6.69 \pm 0.04 \pm 0.63$ $\mu$b, $\sigma_{\psi^{\prime}} = 1.13 \pm 0.07 \pm 0.14$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 54.2 \pm 5.0 \pm 6.7$ nb and $\sigma_{\Upsilon{\rm (2S)}} = 18.4 \pm 3.7 \pm 2.2$ nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.

14 data tables

Differential production cross sections of J/psi as a function of pT.

Differential production cross sections of J/psi as a function of rapidity.

integrated production cross section of J/psi.

More…

Measurement of B meson production cross-sections in proton-proton collisions at sqrt(s)= 7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 08 (2013) 117, 2013.
Inspire Record 1238809 DOI 10.17182/hepdata.74446

The production cross-sections of B mesons are measured in pp collisions at a centre-of-mass energy of 7 TeV, using data collected with the LHCb detector corresponding to a integrated luminosity of 0.36 fb-1. The B+, B0 and Bs0 mesons are reconstructed in the exclusive decays B+ -> J/psi K+, B0 -> J/psi K*0 and Bs0 -> J/psi phi, with J/psi -> mu+ mu-, K*0 -> K+ pi- and phi -> K+ K-. The differential cross-sections are measured as functions of B meson transverse momentum pT and rapidity y, in the range 0 < pT < 40 GeV/c and 2.0 < y < 4.5. The integrated cross-sections in the same pT and y ranges, including charge-conjugate states, are measured to be sigma(pp -> B+ + X) = 38.9 +- 0.3 (stat.) +- 2.5 (syst.) +- 1.3 (norm.) mub, sigma(pp -> B0 + X) = 38.1 +- 0.6 (stat.) +- 3.7 (syst.) +- 4.7 (norm.) mub, sigma(pp -> Bs0 + X) = 10.5 +- 0.2 (stat.) +- 0.8 (syst.) +- 1.0 (norm.) mub, where the third uncertainty arises from the pre-existing branching fraction measurements.

10 data tables

Integrated cross sections for B mesons in the defined kinematic range. The second (sys) uncertainty is the normalisation uncertainty arising from the pre-existing branching fraction measurements.

Double Differential distributions for B0 production.

Double differential distributions for B+ production.

More…

Mid-rapidity anti-baryon to baryon ratios in pp collisions at sqrt(s) = 0.9, 2.76 and 7 TeV measured by ALICE

The ALICE collaboration Abbas, E. ; Abelev, B. ; Adam, J. ; et al.
Eur.Phys.J.C 73 (2013) 2496, 2013.
Inspire Record 1232209 DOI 10.17182/hepdata.61965

The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.

20 data tables

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.

The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.

More…

Exclusive $J/\psi$ and $\psi(2S)$ production in $pp$ collisions at $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
J.Phys.G 40 (2013) 045001, 2013.
Inspire Record 1216886 DOI 10.17182/hepdata.66871

Exclusive $J/\psi$ and $\psi(2S)$ vector meson production has been observed in the dimuon channel using the LHCb detector. The cross-section times branching fractions to two muons with pseudorapidities between 2.0 and 4.5 are measured to be \begin{equation*} \sigma_{pp\rightarrow J/\psi (\rightarrow \mu^{+} \mu^{-})} (2.0 <\eta_{\mu^{\pm}}< 4.5) = 307 \pm 21 \pm 36~\text{pb}, \end{equation*} \begin{equation*} \sigma_{pp\rightarrow \psi(2S) (\rightarrow \mu^{+} \mu^{-})} (2.0 <\eta_{\mu^{\pm}}< 4.5) = 7.8 \pm 1.3 \pm 1.0~\text{pb}, \end{equation*} where the first uncertainties are statistical and the second are systematic. The measurements are found to be in good agreement with results from previous experiments and theoretical predictions. The $J/\psi$ photoproduction cross-section has been measured as a function of the photon-proton centre-of-mass energy. The results are consistent with measurements obtained at HERA and confirm a similar power law behaviour for the photoproduction cross-section.

2 data tables

Cross section times branching ratio to two muons with pseudorapidities between 2.0 and 4.5.

Cross-section measurements (nb) as a function of $J/\psi$ rapidity.


Measurement of the cross-section for Z->e+e- production in pp collisions at sqrt{s}=7TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
JHEP 02 (2013) 106, 2013.
Inspire Record 1208102 DOI 10.17182/hepdata.65545

A measurement of the cross-section for pp$ \rightarrow$Z$ \rightarrow$e$^+$e$^-$ is presented using data at $\sqrt{s}=7$ TeV corresponding to an integrated luminosity of 0.94 fb$^{-1}$. The process is measured within the kinematic acceptance $p_{\mathrm{T}}&gt;20$GeV/$c$ and $2&lt;\eta&lt;4.5$ for the daughter electrons and dielectron invariant mass in the range 60-120 GeV/$c^2$. The cross-section is determined to be $$\sigma(pp \rightarrow Z \rightarrow e^+ e^- )=76.0\pm0.8\pm2.0\pm2.6{\rm pb}$$ where the first uncertainty is statistical, the second is systematic and the third is the uncertainty in the luminosity. The measurement is performed as a function of Z rapidity and as a function of an angular variable which is closely related to the Z transverse momentum. The results are compared with previous LHCb measurements and with theoretical predictions from QCD.

5 data tables

Cross-section of $pp \to Z \to e^+ e^-$ integrated over $Z$ rapidity. The first quoted uncertainty is statistical, the second is the experimental systematic uncertainty, the third is the luminosity uncertainty and the fourth uncertainty is due to FSR correction.

Differential cross-section of $pp \to Z \to e^+ e^-$ as function $Z$ rapidity. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.

Differential cross-section of $pp \to Z \to e^+ e^-$ as function of $\phi^*$ kinematic variable constructed from electron pair azimuthal angle and pseudorapidity and correlated to $Z$ tranverse momentum. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.

More…