The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.
Photon beam asymmetry Sigma at W= 1.2711 GeV
Photon beam asymmetry Sigma at W= 1.2858 GeV
Photon beam asymmetry Sigma at W= 1.3003 GeV
We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP2 trigger conditions and the corresponding simulations.
Jet yield versus jet transverse momentum $p_{T}$ at the detector level and at the parton level. Table includes data for the JP1 trigger conditions and the corresponding simulations.
Dijet yield versus the dijet $M_{inv}$ at the detector level and at the parton level. Table includes data for the JP1 and JP2 trigger conditions and the corresponding simulations.
The fundamental building blocks of the proton, quarks and gluons, have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as for example its spin. The two up and the single down quarks that comprise the proton in the simplest picture account only for a few percent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions where a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, since their masses are quite similar and small compared to the mass of the proton. In the present manuscript, we show evidence from muon pair production measurements that these distributions are significantly different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momentum. These results revive interest in several proposed mechanisms as the origin of this antimatter asymmetry in the proton that had been disfavored by the previous results and point to the future measurements that can distinguish between these mechanisms.
Cross section ratios $\sigma_{D}/2\sigma_{H}$ binned in $x_t$ with their statistical and systematic uncertainties and the average values for the kinematic variables of each $x_t$ bin. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental resolution in $x_t$ as determined by Monte Carlo simulations.
Ratios of $\bar{d}(x)$ to $\bar{u}(x)$ with their upper and lower statistical and systematic uncertainties. The analysis was based on the present cross section ratio data, and next-to-leading order calculations of the Drell-Yan cross sections using CT18 parton distributions for all except the ratio of $\bar{d}(x)$ to $\bar{u}(x)$. The systematic uncertainty is fully correlated among all $x$ bins. The systematic uncertainty does not include a contribution from the choice of the base (CT18) pdf, which is small if added in quadrature to the other systematic uncertainties.
Ratios of $\mathbf{\sigma_D}$ to $\mathbf{2\sigma_H}$ as a function of $\mathbf{P_T}$. Ratios of $\sigma_D$ to $2\sigma_H$ with their statistical and systematic uncertainties as a function of transverse momentum, $P_T$. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column, $\delta P_T$ is the experimental resolution in $P_T$ as determined by Monte Carlo simulation.
Measurements of four-lepton differential and integrated fiducial cross-sections in events with two same-flavour, opposite-charge electron or muon pairs are presented. The data correspond to 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions, collected by the ATLAS detector during Run 2 of the Large Hadron Collider (2015-2018). The final state has contributions from a number of interesting Standard Model processes that dominate in different four-lepton invariant mass regions, including single $Z$ boson production, Higgs boson production and on-shell $ZZ$ production, with a complex mix of interference terms, and possible contributions from physics beyond the Standard Model. The differential cross-sections include the four-lepton invariant mass inclusively, in slices of other kinematic variables, and in different lepton flavour categories. Also measured are dilepton invariant masses, transverse momenta, and angular correlation variables, in four regions of four-lepton invariant mass, each dominated by different processes. The measurements are corrected for detector effects and are compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. The $Z\rightarrow 4\ell$ branching fraction is extracted, giving a value of $\left(4.41 \pm 0.30\right) \times 10^{-6}$. Constraints on effective field theory parameters and a model based on a spontaneously broken $B-L$ gauge symmetry are also evaluated. Further reinterpretations can be performed with the provided information.
Inclusive differential cross section for four leptons (Max = 1710~GeV).
Inclusive differential cross section for four muons (Max = 1320~GeV)
Inclusive differential cross section for four electrons (Max = 887~GeV).
Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.
The direct photon background fraction from Figure 1. This is the estimated fraction of photons in the isolated direct photon sample that came from either $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ decays but the second decay photon is not measured and so these background photons are not eliminated by the tagging cut. These fractions are calculated for the PHENIX EMCal during the 2015 $p$+$p$ run
The transverse single-spin asymmetry of isolated direct photons for $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions with $\sqrt{s} = 200$ GeV. This data appears in both Figure 2 and Table I. An additional scale uncertainty of 3.4% due to the polarization uncertainty is not included.
The $p_\mathrm{T}$-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity ($|y|<0.5$) in proton--proton collisions at $\sqrt{s}=5.02~\mathrm{TeV}$. The data sample used in the analysis corresponds to an integrated luminosity of $(19.3\pm0.4)~\mathrm{nb^{-1}}$. D mesons were reconstructed from their decays $\mathrm{D^0 \to K^-\pi^+}$, $\mathrm{D^+\to K^-\pi^+\pi^+}$, and $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$ and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt $\mathrm{D^+}$ and $\mathrm{D_s^+}$ mesons have an extended $p_\mathrm{T}$ coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on $p_\mathrm{T}$, allowing for a more precise determination of their $p_\mathrm{T}$-integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, $f_\mathrm{s}/(f_\mathrm{u}+f_\mathrm{d})$, is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $\mathrm{b\overline{b}}$ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $\mathrm{d}\sigma_\mathrm{b\overline{b}}/\mathrm{d} y|_\mathrm{|y|<0.5} = 34.5 \pm 2.4 (\mathrm{stat.}) ^{+4.7}_{-2.9} (\mathrm{tot. syst.})~\mu\mathrm{b}$. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section predicted by perturbative QCD calculations.
$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D^0}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D^0 \to K^-\pi^+}$: 0.0395
$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D^+}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D^+\to K^-\pi^+\pi^+}$: 0.0938
$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D_{s}^{+}}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$: 0.0224
Correlations between moments of different flow coefficients are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded with the ALICE detector. These new measurements are based on multiparticle mixed harmonic cumulants calculated using charged particles in the pseudorapidity region $|\eta|<0.8$ with the transverse momentum range $0.2 < p_{\rm T} < 5.0$ GeV/$c$. The centrality dependence of correlations between two flow coefficients as well as the correlations between three flow coefficients, both in terms of their second moments, are shown. In addition, a collection of mixed harmonic cumulants involving higher moments of $v_2$ and $v_3$ is measured for the first time, where the characteristic signature of negative, positive and negative signs of four-, six- and eight-particle cumulants are observed, respectively. The measurements are compared to the hydrodynamic calculations using iEBE-VISHNU with AMPT and TRENTo initial conditions. It is shown that the measurements carried out using the LHC Run 2 data in 2015 have the precision to explore the details of initial-state fluctuations and probe the nonlinear hydrodynamic response of $v_2$ and $v_3$ to their corresponding initial anisotropy coefficients $\varepsilon_2$ and $\varepsilon_3$. These new studies on correlations between three flow coefficients as well as correlations between higher moments of two different flow coefficients will pave the way to tighten constraints on initial-state models and help to extract precise information on the dynamic evolution of the hot and dense matter created in heavy-ion collisions at the LHC.
Centrality dependence of $nMHC(v_2^2,v_3^2)$ in Pb-Pb collisions at 5.02 TeV.
Centrality dependence of $nMHC(v_2^2,v_4^2)$ in Pb-Pb collisions at 5.02 TeV.
Centrality dependence of $nMHC(v_3^2,v_4^2)$ in Pb-Pb collisions at 5.02 TeV.
A search for charged Higgs bosons decaying into a top quark and a bottom quark is presented. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$=13TeV, recorded with the ATLAS detector at the LHC. The production of a heavy charged Higgs boson in association with a top quark and a bottom quark, $pp\rightarrow tbH^{+}\rightarrow tbtb$, is explored in the $H^+$ mass range from 200 to 2000 GeV using final states with jets and one electron or muon. Events are categorised according to the multiplicity of jets and $b$-tagged jets, and multivariate analysis techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching ratio of a charged Higgs boson as a function of its mass; they range from 3.6 pb at 200 GeV to 0.036 pb at 2000 GeV at 95% confidence level. The results are interpreted in the hMSSM and $M_h^{125}$ scenarios.
Observed and expected upper limits for the production of $H^+\rightarrow tb$ in association with a top quark and a bottom quark. The bands surrounding the expected limit show the 68% and 95% confidence intervals. The red lines show the observed and expected 95% CL exclusion limits obtained with the 36 fb$^{-1}$ data sample. Theory predictions are shown for two representative values of $\tan\beta$ in the hMSSM benchmark scenario. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the hMSSM scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_h^{125}$ scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $\kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $\kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$$p_{\rm T}$$<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($\sqrt{s_{\mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$\sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $\sqrt{s_{\mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $\kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $\kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
Reference charged particle multiplicity distributions using only pions and kaons ...
A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.
Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.