Common suppression pattern of eta and pi0 mesons at high transverse momentum in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 202301, 2006.
Inspire Record 709321 DOI 10.17182/hepdata.141855

Inclusive transverse momentum spectra of eta mesons have been measured within p_T = 2-10 GeV/c at mid-rapidity by the PHENIX experiment in Au+Au collisions at sqrt(s_NN) = 200 GeV. In central Au+Au the eta yields are significantly suppressed compared to peripheral Au+Au, d+Au and p+p yields scaled by the corresponding number of nucleon-nucleon collisions. The magnitude, centrality and p_T dependence of the suppression is common, within errors, for eta and pi^0. The ratio of eta to pi^0 spectra at high p_T amounts to 0.40 < R_eta/pi^0 < 0.48 for the three systems in agreement with the world average measured in hadronic and nuclear reactions and, at large scaled momentum, in e^+e^- collisions.

10 data tables

Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

Nuclear modification factors for $\eta$ in Au+Au centralities.

More…

Measurement of $\phi$-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV and energy dependence of $\sigma_\phi$ from $\sqrt{s}$=200 GeV to 7 TeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 092006, 2018.
Inspire Record 1628651 DOI 10.17182/hepdata.142337

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of $\phi$(1020) meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=$510 GeV via the dimuon decay channel. The integrated cross section in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $2<p_T<7$ GeV/$c$ is $\sigma_\phi=2.79 \pm 0.20\,{\rm (stat)} \pm 0.17\,{\rm (syst)} \pm 0.34\, {\rm (norm)} \times 10^{-2}$~mb. The energy dependence of $\sigma_\phi$ ($1.2<|y|<2.2$; $2<p_T<5$ GeV/$c$) is studied using the PHENIX measurements at $\sqrt{s}=$200 and 510 GeV and the Large-Hadron-Collider measurements at $\sqrt{s}=$2.76 and 7 TeV. The experimental results are compared to various event generator predictions (pythia6, pythia8, phojet, ampt, epos3, and epos-lhc).

3 data tables

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-differential-production cross section d${}^{2}$$\sigma_{\phi}/dp_T dy$ for 1.2 < |y| < 2.2 in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV.


Particle-species dependent modification of jet-induced correlations in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 101 (2008) 082301, 2008.
Inspire Record 770833 DOI 10.17182/hepdata.142338

We report PHENIX measurements of the correlation of a trigger hadron at intermediate transverse momentum (2.5<p_{T,trig}<4 GeV/c), with associated mesons or baryons at lower p_{T,assoc}, in Au+Au collisions at sqrt(s_NN) = 200 GeV. The jet correlations for both baryons and mesons show similar shape alterations as a function of centrality, characteristic of strong modification of the away-side jet. The ratio of jet-associated baryons to mesons for this jet increases with centrality and p_{T,assoc} and, in the most central collisions, reaches a value similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation, but could be due to jet-like contributions from correlated soft partons which recombine upon hadronization.

10 data tables

<p>Correlation functions for associated partner mesons for centrality selections of 20-40% and 70-90%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

<p>Correlation functions for associated partner baryons for centrality selections of 20-40% and 70-90%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

<p>Jet-pair distributions for associated mesons for $1 < p_{T,assoc} < 1.3\ \mathrm{GeV}/c$ and $1.6 < p_{T,assoc} < 2.0\ \mathrm{GeV}/c$. Results are for a hadron trigger $2.5 < p_T < 4.0\ \mathrm{GeV}/c$ and centrality selections of 0-20% and 20-40%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

More…

Measurement of charm and bottom production from semileptonic hadron decays in $p$$+$$p$ collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 092003, 2019.
Inspire Record 1716636 DOI 10.17182/hepdata.142288

Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in $p$$+$$p$ collisions provide a precision baseline for comparable forthcoming measurements in A$+$A collisions.

5 data tables

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Unfolded charm and bottom hadron yields in bins of transverse momentum.

More…

Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to 2$^{\rm nd}$- and $3^{\rm rd}$-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 112 (2014) 222301, 2014.
Inspire Record 1279634 DOI 10.17182/hepdata.141895

Charged-pion-interferometry measurements were made with respect to the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event plane for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event planes. The results for the 2$^{\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.

5 data tables

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The solid points are the oscillation amplitudes relative to the average of HBT radii for four different combinations (a) $2R^{2}_{s,n}/R^{2}_{s,0}$, (b) $2R^{2}_{os,n}/R^{2}_{s,0}$, (c) $2R^{2}_{o,n}/R^{2}_{o,0}$, and (d) $2R^{2}_{o,n}/R^{2}_{s,0}$ as a function of initial spatial anisotropy ($\varepsilon_{n}$), which are calculated using the Glauber model.

More…

Measurements of mass-dependent azimuthal anisotropy in central $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064904, 2018.
Inspire Record 1632759 DOI 10.17182/hepdata.141812

We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|\eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. When taken together with previously published measurements in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of $v_2(p_{T})$ in $d$$+$Au and $^3$He$+$Au collisions, just as in large nucleus-nucleus ($A$$+$$A$) collisions, and a smaller splitting in $p$$+$Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low $p_T$ ($< 1.5$ GeV/$c$), but fail to describe various features at higher $p_T$. In all systems, the $v_2$ values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark($KE_T/n_q$), which was also seen previously in $A$$+$$A$ collisions.

4 data tables

Values of $v_2$($p_T$) for kaons in central 0-5% $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Values of $v_2$($p_T$) for kaons in central 0-5% $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Transverse momentum dependence of $v_2$ for identified pions and protons within $|\eta|$ < 0.35 in 0-5% central $p$+Au collisions.

More…

Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 79 (2009) 012003, 2009.
Inspire Record 798469 DOI 10.17182/hepdata.142076

The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.

4 data tables

The fraction of inclusive $\pi^0$ yield which satisfied the BBC trigger condition.

The neutral pion production cross section at $\sqrt{s}$ = 62.4 GeV as a function of $p_T$ and the results of next-to-leading order (NLO) and next-to-leading logarithmic accuracy (NLL) perturbative Quantum Chromodynamics (pQCD) calculations for the theory scale $\mu$ = $p_T$.

The parameter $n$ obtained from the ratio of invariant cross section at $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200GeV, at each $x_T$ of $\sqrt{s}$ = 62.4 GeV data; error bars show the statistical and systematic uncertainties of the $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200 GeV data.

More…

Heavy Quark Production in p+p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044905, 2011.
Inspire Record 854475 DOI 10.17182/hepdata.142339

Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.

12 data tables

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Heavy-flavor $e^{\pm}$ $v_2$ from Au+Au collisions, for the centralities indicated.

More…

Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 051106, 2007.
Inspire Record 749394 DOI 10.17182/hepdata.142289

The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.

4 data tables

The neutral pion production cross section at $\sqrt{s}$ = 200 GeV as a function of $p_T$ and the results of NLO pQCD calculations for theory scales $\mu$ = $p_T$/2, $p_T$, and $2p_T$. Additional 9.7% normalization uncertainty is not included.

The double helicity asymmetry ($A_{LL}$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Not included in the figure/table: the correlated for all points scale systematic uncertainty of 9.4% (scales both the values and stat. uncertainties by the same factor).

The single helicity asymmetry ($A_L$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Systematic uncertainties are negligible.

More…

Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034904, 2013.
Inspire Record 1102930 DOI 10.17182/hepdata.142077

We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.

27 data tables

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend.Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…