A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.
Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).
CLASS1 (see Table for event classification).
CLASS1 (see Table for event classification).
Measurements of the global transverse energy distributions dσ / dE T and dE T / dη using the new AGS beam of 197 Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28 Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π . The dσ / dE T spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ / dE T spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
Positive pion and kaon production from Au+Au reactions have been measured as a function of beam energy over the range 2.0-10.7~AGeV. Both the kaon and the pion production cross-sections at mid-rapidity are observed to increase steadily with beam kinetic energy. The ratio of K$^+$ to $\pi^+$ mid-rapidity yields increases from 0.0271$\pm0.0015\pm0.0014$ at 2.0~AGeV to 0.202$\pm0.005\pm0.010$ at 10.7~AGeV and is larger than the K$^+$/$\pi^+$ ratio from p+p reactions over the same beam energy region. There is no indication of an onset of any new production mechanism in heavy-ion reactions in this energy range beyond rescattering of hadrons.
The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.
The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.
Mid-rapidity spectra and yields of K$^-$ and K$^+$ have been measured for Au+Au collisions at 4, 6, 8, and 10.7 AGeV. The K$^-$ yield increases faster with beam energy than for K$^+$ and hence the K$^-$/K$^+$ ratio increases with beam energy. This ratio is studied as a function of both $\sqrt{s}$ and $\sqrt{s}$-$\sqrt{s_{th}}$ which allows the direct comparison of the kaon yields with respect to the production threshold in p+p reactions. For equal $\sqrt{s}$ - $\sqrt{s_{th}}$ the measured ratio K$^-$/K$^+$=0.2 at energies above threshold in contrast to the K$^-$/K$^+$ ratio of near unity observed at energies below threshold. The use of the K$^-$/K$^+$ ratio to test the predicted changes of kaon properties in dense nuclear matter is discussed.
Only statistical errors are presented.
Only statistical errors are presented.
Only statistical errors are presented.
Charged kaon production has been measured in Si+Al and Si+Au collisions at 14.6 A GeV/c, and Au+Au collisions at 11.1 A GeV/c by Experiments 859 and 866 (the E--802 Collaboration) at the BNL AGS. Invariant transverse mass spectra and rapidity distributions for both K+ and K- are presented. The centrality dependence of rapidity-integrated kaon yields is studied. Strangeness enhancement is observed as an increase in the slope of the kaon yield with the total number of participants as well as the yield per participant. The enhancement starts with peripheral Si+Al and Si+Au collisions (relative to N+N) and appears to saturate for a moderate number of participating nucleons in Si+Au collisions. It is also observed to increase slowly with centrality in Au+Au collisions, to a level in the most central Au+Au collisions that is greater than that found in central Si+A collisions. The enhancement factor for $K^+$ production are 3.0 +-0.2(stat.) +-0.4(syst.) and 4.0 +-0.3(stat.) +-0.5(syst.), respectively, for the most central 7% Si+Au collisions and the most central 4% Au+Au collisions relative to N+N at the correponding beam energy.
In order to study the centrality dependence of kaon production, the data were devided into BIN`s in centrality. The selection for AU+AU data was made by using of the Zero-degree CALorimeter (ZCAL). The zero-degree energy resolution was measured to be 1.48*sqrt(E).
In order to study the centrality dependence of kaon production, the data were devided into BIN`s in centrality. The selection for AU+AU data was made by using of the Zero-degree CALorimeter (ZCAL). The zero-degree energy resolution was measured to be 1.48*sqrt(E).
For SI+AU data the centrality selection (calibrated target multiplicity) was made by using of E-859 Target Multiplicity Array (TMA).
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.