Date

Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

6 data tables

$P_{T}$ Recoil distribution of events simulated with PYTHIA 6.4 and reconstructed before and after the boson's PT correction has been applied.

Estimated background contributions for the $W^+ -> ev$ data yields.

Estimated background contributions for the $W^- -> ev$ data yields.

More…

Measurement of the forward-backward asymmetry of $\Lambda$ and $\bar{\Lambda}$ production in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 032002, 2016.
Inspire Record 1404885 DOI 10.17182/hepdata.76972

We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.

2 data tables

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.


Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 538, 2016.
Inspire Record 1404878 DOI 10.17182/hepdata.84154

Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

236 data tables

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

More…

Measurement of the I=1/2 $K \pi$ $\mathcal{S}$-wave amplitude from Dalitz plot analyses of $\eta_c \to K \bar K \pi$ in two-photon interactions

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 93 (2016) 012005, 2016.
Inspire Record 1403544 DOI 10.17182/hepdata.76968

We study the processes $\gamma \gamma \to K^0_S K^{\pm}\pi^{\mp}$ and $\gamma \gamma \to K^+ K^- \pi^0$ using a data sample of 519~$fb^{-1}$ recorded with the BaBar detector operating at the SLAC PEP-II asymmetric-energy $e^+ e^-$ collider at center-of-mass energies at and near the $\Upsilon(nS)$ ($n = 2,3,4$) resonances. We observe $\eta_c$ decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I=1/2$ $K \pi$ $\mathcal{S}$-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behaviour for the phase up to a mass of 1.5 $GeV/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m=1931 \pm 14 \pm 22 \ MeV/c^2$ and $\Gamma=271 \pm 22 \pm 29 \ MeV$.

2 data tables

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^0_{\scriptscriptstyle S} K^{\pm}\pi^{\mp}$. The amplitudes and phases in the mass interval 14 are fixed to constant values.

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^+ K^- \pi^0$. The amplitudes and phases in the mass interval 14 are fixed to constant values.


Measurement of Interaction between Antiprotons

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 527 (2015) 345-348, 2015.
Inspire Record 1385105 DOI 10.17182/hepdata.71504

One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force since acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, we have no direct knowledge of the nuclear force between antinucleons. Here, we study antiproton pair correlations among data taken by the STAR experiment at the Relativistic Heavy Ion Collider and show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: namely, the scattering length (f0) and effective range (d0). As direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, our result provides a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.

2 data tables

Correlation function for proton-proton pairs (top), antiproton-antiproton pairs (middle), and the ratio of the former to the latter (bottom).

Measurements of the singlet s-wave scattering length (f0) and the effective range (d0) from this and other experiments.


Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

The Super-Kamiokande collaboration Richard, E. ; Okumura, K. ; Abe, K. ; et al.
Phys.Rev.D 94 (2016) 052001, 2016.
Inspire Record 1401192 DOI 10.17182/hepdata.76912

A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\nu}_e+{\bar{\nu}}_e$ and ${\nu}_{\mu}+{\bar{\nu}}_{\mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${\nu}_e$ and ${\nu}_{\mu}$ samples at 8.0 {\sigma} and 6.0 {\sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {\sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma} level.

2 data tables

Electron neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.

Muon neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.


Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s}=7$TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 012002, 2016.
Inspire Record 1400803 DOI 10.17182/hepdata.76911

A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

2 data tables

The numerical summary of the unfolded $\cos\theta_1\cdot\cos\theta_2$ distribution, with statistical and systematic uncertainties.

The correlation factors for the statistical uncertainties between any two bins of the unfolded distribution.


Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

10 data tables

Fiducial particle-level differential cross-section, with statistical and systematic uncertainties, as a function of the top-jet candidate p_T.

Parton-level differential cross-section, with statistical and systematic uncertainties, as a function of the hadronically decaying top quark p_T.

The individual systematic uncertainties calculated as a percentage of the particle-level differential cross-section $d\sigma_{tt} / d p_{T,ptcl}$ in each bin. Variations on the two sides ("UP" and "DOWN") are separately quoted with their respective signs. Uncertainties smaller than 0.1% are neglected.

More…

Production of $\Lambda$ hyperons in inelastic p+p interactions at 158 GeV/$c$

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 76 (2016) 198, 2016.
Inspire Record 1397634 DOI 10.17182/hepdata.76910

Inclusive production of $\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~\GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\,\pm0.006\;(stat.)\,\pm 0.010\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.

6 data tables

Double-differential yield $\frac{d^2n}{dydp_{_T}}$.

Double-differential yield $\frac{d^2n}{dydm_{_T}}$.

Double-differential yields, $\frac{d^{2}n}{x_{_F}p_{_T}}$ and $f_n(x_{_F},p_{T})$, for $x_{_F}<0$.

More…