Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

1 data table match query

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.


Cross Section and Transverse Single-Spin Asymmetry of $\eta$ Mesons in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200$ GeV at Forward Rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267

We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\eta$ mesons at large pseudorapidity from $\sqrt{s}=200$~GeV $p^{\uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|\eta|<3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $\langle{A_{N}}\rangle=0.061{\pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $\eta$ and $\pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\uparrow}+p$ collisions.

3 data tables match query

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

ASYM for ETA mesons measured as a function of PT for ABS(XF) > 0.2. Uncertainties listed are those due to the statistics, the PT uncorrelated uncertainties due to extracting ASYM, and the correlated relative luminosity uncertainty.


Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

47 data tables match query

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table match query

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Measurement of the inclusive W+- and Z/gamma cross sections in the electron and muon decay channels in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 072004, 2012.
Inspire Record 928289 DOI 10.17182/hepdata.58162

The production cross sections of the inclusive Drell-Yan processes W to l nu and Z/gamma to ll (l=e,mu) are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb^-1 collected in 2010, the precision of these measurements reaches a few per cent. The integrated and the differential W+- and Z/gamma cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at NNLO.

9 data tables match query

Combined lepton charge asymmetry from W boson decays.

Fiducial cross sections of Z0 versus W+ from fitting the combined electron and muon decay data sets. The table shows the fitted ellipse centre in Z0 W+ space plus the ellipse radii and angle using the total uncertainties and only the experimental uncertainties.

Fiducial cross sections of Z0 versus W- from fitting the combined electron and muon decay data sets. The table shows the fitted ellipse centre in Z0 W- space plus the ellipse radii and angle using the total uncertainties and only the experimental uncertainties.

More…

Measurement of the production and lepton charge asymmetry of $\textit{W}$ bosons in Pb+Pb collisions at $\sqrt{s_{\mathrm{\mathbf{NN}}}}=$ 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 23, 2015.
Inspire Record 1311623 DOI 10.17182/hepdata.66358

A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.

1 data table match query

The lepton charge asymmetry $A_{\ell}$ from $W^\pm$ bosons as a function of absolute pseudorapidity.


Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3134, 2014.
Inspire Record 1305430 DOI 10.17182/hepdata.65760

A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb$^{-1}$ at $\sqrt{s}$ = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the $\ell\ell q q$ contact interaction scale $\Lambda$ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale $M_{S}$ between 3.2 TeV to 5.0 TeV.

2 data tables match query

Reconstructed $A_{\rm FB}$ distributions for data and the SM background estimate as a function of dielectron mass.

Reconstructed $A_{\rm FB}$ distributions for data and the SM background estimate as a function of dimuon mass.


Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

8 data tables match query

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…