A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 092009, 2015.
Inspire Record 1388868 DOI 10.17182/hepdata.70787

We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

24 data tables

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMAX region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMIN region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransAVE region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

More…

Measurements of underlying-event properties using neutral and charged particles in pp collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1636, 2011.
Inspire Record 891834 DOI 10.17182/hepdata.57065

We present first measurements of charged and neutral particle-flow correlations in pp collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on charged particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.

10 data tables

900 GeV Particle density vs. Delta(phi) with leading particle pT > 1 GeV.

900 GeV Particle density vs. Delta(phi) with leading particle pT > 2 GeV.

900 GeV Particle density vs. Delta(phi) with leading particle pT > 3 GeV.

More…

Measurement of underlying event characteristics using charged particles in pp collisions at $\sqrt{s} = 900 GeV$ and 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 83 (2011) 112001, 2011.
Inspire Record 879407 DOI 10.17182/hepdata.57151

Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The 'underlying event' is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest-pt charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, pt density, and average pt are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

22 data tables

Particle Number Density versus Lead Particle PT at centre-of-mass energy 900 GeV.

Particle Number Density versus Lead Particle PT at centre-of-mass energy 7000 GeV.

Particle PT Density versus Lead Particle PT at centre-of-mass energy 900 GeV.

More…