A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau_\mathrm{N}$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm} \pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0 $\times$ 10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.
A search for the production of a W boson and a Higgs boson through vector boson scattering (VBS) is presented, using CMS data from proton-proton collisions at $\sqrt{s}$ = 13 TeV collected from 2016 to 2018. The integrated luminosity of the data sample is 138 fb$^{-1}$. Selected events must be consistent with the presence of two jets originating from VBS, the leptonic decay of the W boson to an electron or muon, possibly also through an intermediate $\tau$ lepton, and a Higgs boson decaying into a pair of b quarks, reconstructed as either a single merged jet or two resolved jets. A measurement of the process as predicted by the standard model (SM) is performed alongside a study of beyond-the-SM (BSM) scenarios. The SM analysis sets an observed (expected) 95% confidence level upper limit of 14.3 (9.9) on the ratio of the measured VBS WH cross section to that expected by the SM. The BSM analysis, conducted within the so-called $\kappa$ framework, excludes all scenarios with $\lambda_\mathrm{WZ}$ $\lt$ 0 that are consistent with current measurements, where $\lambda_\mathrm{WZ}$ = $\kappa_\mathrm{W} / \kappa_\mathrm{Z}$ and $\kappa_\mathrm{W}$ and $\kappa_\mathrm{Z}$ are the HWW and HZZ coupling modifiers, respectively. The signficance of the exclusion is beyond 5 standard deviations, and it is consistent with the SM expectation of $\lambda_\mathrm{WZ}$ = 1.
A search for $\gamma$H production is performed with data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of H $\to$$\mathrm{b\bar{b}}$ and H $\to$ 4$\ell$ are analyzed. This study examines effective HZ$\gamma$ and H$\gamma\gamma$ anomalous couplings within the context of an effective field theory. In this approach, the production cross section is constrained to be $\sigma_{\gamma\text{H}}$$\lt$ 16.4 fb at 95% confidence level (CL). Simultaneous constraints on four anomalous couplings involving HZ$\gamma$ and H$\gamma\gamma$ are provided. Additionally, the production rate for H $\to$ 4$\ell$ is examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. Assuming the standard model values for the Yukawa couplings of the bottom and top quarks,the following simultaneous constraints are obtained: $\kappa_\text{u}$ = (0.0 $\pm$ 1.5) $\times$ 10$^{3}$, $\kappa_\text{d}$ = (0.0 $\pm$ 7.1) $\times$ 10$^{2}$, $\kappa_\text{s}$ = 0$^{+33}_{-34}$, and $\kappa_\text{c}$ = 0.0$^{+2.7}_{-3.0}$. This rules out the hypothesis that up- or down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$\psi(\mu^+\mu^-)\phi$(1020)(K$^+$K$^-$) and B$^+$$\to$ J/$\psi(\mu^+\mu^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$s are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.
A search is presented for rare decays of the Z and Higgs bosons to a photon and a J/$\psi$ or a $\psi$(2S) meson, with the charmonium state subsequentially decaying to a pair of muons. The data set corresponds to an integrated luminosity of 123 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. No evidence for branching fractions of these rare decay channels larger than predicted in the standard model is observed. Upper limits at 95% confidence level are set: $\mathcal{B}$(H $\to$ J/$\psi \gamma$) $\lt$ 2.6 $\times$ 10$^{-4}$, $\mathcal{B}$(H $\to$ $\psi$(2S)$\gamma$) $\lt$ 9.9 $\times$ 10$^{-4}$, $\mathcal{B}$(Z $\to$ J/$\psi \gamma$) $\lt$ 0.6 $\times$ 10$^{-6}$, and $\mathcal{B}$(Z $\to$ $\psi$(2S)$\gamma$) $\lt$ 1.3 $\times$ 10$^{-6}$. The ratio of the Higgs boson coupling modifiers $\kappa_\mathrm{c} / \kappa_\gamma$ is constrained to be in the interval ($-$157, $+$199) at 95% confidence level. Assuming $\kappa_\gamma = 1$, this interval becomes ($-$166, $+$208).
A full set of optimized observables is measured in an angular analysis of the decay B$^0$$\to$ K$^*$(892)$^0\mu^+\mu^-$ using a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The analysis is performed in six bins of the squared invariant mass of the dimuon system, $q^2$, over the range 1.1 $\lt$$q^2$$\lt$ 16 GeV$^2$. The results are among the most precise experimental measurements of the angular observables for this decay and are compared to a variety of predictions based on the standard model. Some of these predictions exhibit tension with the measurements.
The inclusive WZ production cross section is measured in proton-proton collisions at a centre-of-mass energy of 13.6 TeV, using data collected during 2022 with the CMS detector, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. The measurement uses multileptonic final states and a simultaneous likelihood fit to the number of events in four different lepton flavour categories: eee, ee$\mu$, $\mu\mu $e, and $\mu\mu\mu$. The selection is optimized to minimize the number of background events, and relies on an efficient prompt lepton discrimination strategy. The WZ production cross section is measured in a phase space defined within a 30 GeV window around the Z boson mass, as $\sigma_{\text{total}}$(pp$\to$WZ) = 55.2$\pm$1.2 (stat) $\pm$1.2 (syst) $\pm$0.8 (lumi) $\pm$0.1 (theo) pb. In addition, the cross section is measured in a fiducial phase space closer to the detector-level requirements. All the measurements presented in this paper are in agreement with standard model predictions.
A measurement of the WZ$\gamma$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pm\nu\ell^+\ell^-$, where $\ell$ = e or $\mu$, accompanied by an additional photon. The observed (expected) significance of the WZ$\gamma$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.