Date

Measurement of the top-quark pole mass in dileptonic $t\bar{t}+ 1\text{-jet}$ events at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-135, 2025.
Inspire Record 2942410 DOI 10.17182/hepdata.159628

A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of 140 $\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3(\text{stat.})\pm1.4(\text{syst.})\pm 0.3(\text{scale})\pm 0.2(\text{PDF}\oplusα_\text{S})$ GeV, which is in good agreement with other top-quark mass results.

16 data tables

Unfolded number of events in the 2-to-3measurement (not normalized). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.

Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

More…

Measurement of f$_{1}$(1285) production in pp collisions at $\mathbf{\sqrt{{\textit s}}}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 866 (2025) 139562, 2025.
Inspire Record 2829849 DOI 10.17182/hepdata.158601

This study presents the first measurement of the f$_{1}$(1285) resonance using the ALICE detector in inelastic proton-proton collisions at a center-of-mass energy of 13 TeV. The resonance is reconstructed at midrapidity ($|y| <$ 0.5) through the hadronic decay channel f$_{1} (1285) \rightarrow \mathrm{K^{0}_{S} K^{\pm}\pi^{\mp}}$. Key measurements include the determination of its mass, transverse-momentum integrated yield, and average transverse momentum. Additionally, the ratio of the transverse-momentum integrated yield of f$_{1}$(1285) to pion is compared with calculations from the canonical statistical hadronization model. The model calculation, assuming a zero total strangeness content for f$_{1}$(1285), reproduces the data within 1$\sigma$ deviation, shedding light on the quark composition of f$_{1}$(1285).

2 data tables

Mass of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.

$p_{\rm T}$-distributions of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.


Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2017) 076, 2017.
Inspire Record 1508173 DOI 10.17182/hepdata.81708

A search is presented for decays beyond the standard model of the 125 GeV Higgs bosons to a pair of light bosons, based on models with extended scalar sectors. Light boson masses between 5 and 62.5 GeV are probed in final states containing four tau leptons, two muons and two b quarks, or two muons and two tau leptons. The results are from data in proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, accumulated by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. No evidence for such exotic decays is found in the data. Upper limits are set on the product of the cross section and branching fraction for several signal processes. The results are also compared to predictions of two-Higgs-doublet models, including those with an additional scalar singlet.

6 data tables

Median expected 95% CL limits on the branching fraction B(h-->aa)*B^2(a-->tautau) assuming SM h production rates for pseudoscalar mass points between 5 and 15 GeV.

Median observed 95% CL limits on the branching fraction B(h-->aa)*B^2(a-->tautau) assuming SM h production rates for pseudoscalar mass points between 5 and 15 GeV.

Median expected 95% CL limits on the branching fraction B(h-->aa)*B(a-->mumu)*B(a-->bb) assuming SM h production rates for pseudoscalar mass points between 25 and 62.5 GeV.

More…

Measurement of the t-tbar production cross section in the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 029, 2016.
Inspire Record 1426692 DOI 10.17182/hepdata.74208

The inclusive cross section for top quark pair production is measured in proton-proton collisions at sqrt(s) = 7 and 8 TeV, corresponding to 5.0 and 19.7 invers-femtobarns, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 +/- 2.1 (stat) +4.5-4.0 (syst) +/- 3.8 (lumi) pb at sqrt(s) = 7 TeV, and 244.9 +/- 1.4 (stat) +6.3-5.5 (syst) +/- 6.4 (lumi) pb at sqrt(s) = 8 TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173.8 +1.7-1.8 GeV. The data at sqrt(s) = 8 TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric top squarks with masses close to the top quark mass.

3 data tables

Measurement of the visible $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV. The visible cross section is defined for events containing an oppositely charged $\rm{e}\mu$ pair from the decay chain ${\rm t} \rightarrow {\rm W b} \rightarrow {\ell} \nu {\rm b}$ (including ${\rm W} \rightarrow \tau \nu \rightarrow {\ell} \nu \nu \nu$) and with both leptons satisfying $p_T > 20\, \rm{GeV}$ and $|{\eta}| < 2.4$.

Measurement of the inclusive $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV.

Top quark pole mass at NNLO+NNLL extracted by comparing the measured $t\bar{t}$ production cross sections at 7 and 8 TeV with predictions employing different PDF sets. The uncertainties of the CT14 PDF set are scaled to 68% confidence level.


Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…