Measurement of the triple-differential dijet cross section in proton-proton collisions at sqrt(s) = 8 TeV and constraints on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 746, 2017.
Inspire Record 1598460 DOI 10.17182/hepdata.79410

A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 TeV using 19.7 inverse femtobarns of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is alpha[S](M[Z]) = 0.1199 +/- 0.0015 (exp) -0.0020 +0.0031 (theo), where M[Z] is the mass of the Z boson.

24 data tables

Triple-differential dijet cross section as a function of the average transverse momentum of the leading two jets with detailed experimental uncertainties (symmetrised).

Statistical correlation matrix from unfolding

Triple-differential dijet cross section as a function of the average transverse momentum of the leading two jets with detailed experimental uncertainties (symmetrised).

More…

Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter mediators and other new particles

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 130, 2018.
Inspire Record 1676214 DOI 10.17182/hepdata.80166

Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$^{-1}$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.

5 data tables

Observed differential dijet spectrum from the low-mass analysis. The cross-section is calculated by dividing the event yield by the bin width and luminosity.

Observed differential dijet spectrum from the high-mass analysis. The cross-section is calculated by dividing the event yield by the bin width and luminosity.

The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for quark-quark, quark-gluon, and gluon-gluon type dijet resonances.

More…

Measurement of the W+ W- cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 401, 2016.
Inspire Record 1382594 DOI 10.17182/hepdata.79411

A measurement of the W boson pair production cross section in proton-proton collisions at sqrt(s) = 8 TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4 inverse femtobarns. The W+W- candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured W+W- cross section is 60.1 +/- 0.9 (stat) +/- 3.2 (exp) +/- 3.1 (theo) +/- 1.6 (lum) pb = 60.1 +/- 4.8 pb, consistent with the standard model prediction. The W+W- cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -5.7 < c[WWW]/Lambda^2 < 5.9 TeV^{-2}, -11.4 < c[W]/Lambda^2 < 5.4 TeV^{-2}, -29.2 < c[B]/Lambda^2 < 23.9 TeV^{-2}, in the HISZ basis.

9 data tables

The W+W- production cross section combining the four event categories (different-flavor and same-flavor in the 0-jet and 1-jet bin separately) by performing a profile likelihood fit to the data.

The W+W- production cross section in fiducial regions defined by requiring no jets at particle level with jet pT thresholds as listed.

The W+W- production cross section in fiducial regions defined by requiring zero jets at particle level with varying jet pT thresholds and requiring prompt leptons with pT > 20 GeV and abs(eta) < 2.5, before final-state radiation.

More…

Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 032009, 2018.
Inspire Record 1634253 DOI 10.17182/hepdata.79809

A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum ($p_\mathrm{T}^\text{miss}$). The search uses proton-proton collision data at $\sqrt{s}=$ 13 TeV amounting to 35.9 fb$^{-1}$ of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant $\mathrm{t}\overline{\mathrm{t}}$ background with requirements on $p_\mathrm{T}^\text{miss}$ and transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeV and on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

49 data tables

Figure 2 (left). Distribution of $M_{T2}(ll)$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

Figure 2 (center). Distribution of $M_{T2}(blbl)$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

Figure 2 (right). Distribution of $p_{T}^{miss}$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

More…

Observation of top quark production in proton-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 242001, 2017.
Inspire Record 1624694 DOI 10.17182/hepdata.79668

The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt(s[NN]) = 8.16 TeV. The measurement is performed using events with exactly one isolated electron or muon and at least four jets. The data sample corresponds to an integrated luminosity of 174 inverse nanobarns. The significance of the tt-bar signal against the background-only hypothesis is above five standard deviations. The measured cross section is sigma[tt-bar] = 45 +/- 8 nb, consistent with predictions from perturbative quantum chromodynamics.

7 data tables

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 0 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 1 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the $\geq$2 b category after all selections. The error bars indicate the statistical uncertainties.

More…

Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 032, 2018.
Inspire Record 1635889 DOI 10.17182/hepdata.80167

This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13 TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb$^{-1}$. The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7 TeV respectively.

6 data tables

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the towards ($\Delta\phi< 60^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the transverse ($60^{\circ} <\Delta\phi< 120^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the away ($\Delta\phi> 120^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

More…

Search for $R$-parity violating supersymmetry in pp collisions at $\sqrt{s} = $ 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 783 (2018) 114-139, 2018.
Inspire Record 1644901 DOI 10.17182/hepdata.81002

Results are reported from a search for physics beyond the standard model in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = $ 13 TeV. The search uses a signature of a single lepton, large jet and bottom quark jet multiplicities, and high sum of large-radius jet masses, without any requirement on the missing transverse momentum in an event. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ recorded by the CMS experiment at the LHC. No significant excess beyond the prediction from standard model processes is observed. The results are interpreted in terms of upper limits on the production cross section for $R$-parity violating supersymmetric extensions of the standard model using a benchmark model of gluino pair production, in which each gluino decays promptly via $ {\mathrm{\widetilde{g}}} \rightarrow \mathrm{t} \mathrm{b} \mathrm{s} $. Gluinos with a mass below 1610 GeV are excluded at 95% confidence level.

5 data tables

Figure 8. Observed cross section upper limits at 95% CL for a model of gluino pair production with gluino->tbs compared to the gluino pair production cross section.

Figure 8. Expected limits at 95% CL and their ±1 sigma variations for a model of gluino pair production with gluino->tbs compared to the gluino pair production cross section.

Figure 8. Expected limits at 95% CL and their ±2 sigma variations for a model of gluino pair production with gluino->tbs compared to the gluino pair production cross section.

More…

Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $\sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 291, 2018.
Inspire Record 1633763 DOI 10.17182/hepdata.82304

A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at $\sqrt{s} = $ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.

9 data tables

Expected event yields in each $p_{\mathrm{T}}^{\mathrm{miss}}$ bin for the sum of background processes in the signal region (SR). The background yields and their corresponding uncertainties are obtained after performing a fit to data. Two sets of background yields are reported: one from a background-only fit to data in both the SR and the control regions (CRs), and one from a fit to data in all CRs, but excluding data in the SR. The observed numbers of events in each bin are also included. The last bin includes overflow.

Limit on the signal strength of the DM signal in a simplified model with a vector mediator.

Limit on the signal strength of the DM signal in a simplified model with an axial-vector mediator.

More…

Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 081801, 2018.
Inspire Record 1624170 DOI 10.17182/hepdata.81935

The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 $\pm$ 0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs bosons.

8 data tables

The measured W+W+ EWK fiducual cross section.

Data and estimated signal and background yields after the selection in the two dimensional dijet-dilepton mass distributions. This is used for the standard model measurements.

Data and estimated signal and background yields after the selection in the one dimensional dilepton mass distribution. This is used for the evaluation of the anomalous coupling limits.

More…

Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 032003, 2017.
Inspire Record 1594909 DOI 10.17182/hepdata.79412

A search for supersymmetry is presented based on multijet events with large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of sqrt(s) = 13 TeV. The data, corresponding to an integrated luminosity of 35.9 inverse femtobarns, were collected with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No evidence for a significant excess of events is observed relative to the expectation from the standard model. Limits on the cross sections for the pair production of gluinos and squarks are derived in the context of simplified models. Assuming the lightest supersymmetric particle to be a weakly interacting neutralino, 95% confidence level lower limits on the gluino mass as large as 1800 to 1960 GeV are derived, and on the squark mass as large as 960 to 1390 GeV, depending on the production and decay scenario.

70 data tables

Observed number of events and pre-fit background predictions in the $N_{jet}=2$ search bins.

Observed number of events and pre-fit background predictions in the $3\leq N_{jet}\leq4$ search bins.

Observed number of events and pre-fit background predictions in the $5\leq N_{jet}\leq6$ search bins.

More…