Showing 2 of 2 results
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
The effective mass distribution in VR2Z.
The ETmiss distribution in SR0noZa.
The effective mass distribution in SR0noZa.
The ETmiss distribution in SR1noZa.
The effective mass distribution in SR1noZa.
The ETmiss distribution in SR2noZa.
The effective mass distribution in SR2noZa.
The ETmiss distribution in SR0noZb.
The effective mass distribution in SR0noZb.
The ETmiss distribution in SR1noZb.
The effective mass distribution in SR1noZb.
The ETmiss distribution in SR2noZb.
The effective mass distribution in SR2noZb.
The ETmiss distribution in SR0Z.
The effective mass distribution in SR0Z.
The ETmiss distribution in SR1Z.
The effective mass distribution in SR1Z.
The ETmiss distribution in SR2Z.
The effective mass distribution in SR2Z.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the R-slepton RPC model.
Expected 95% CL exclusion contour for the R-slepton RPC model.
Observed and expected 95% CL cross-section upper limits for the Stau RPC model, together with the theoretically predicted cross-section.
Observed and expected 95% CL cross-section upper limits for the Z RPC model, together with the theoretically predicted cross-section.
Observed 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Expected 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Observed 95% CL exclusion contour for the GGM tan beta = 30 model.
Expected 95% CL exclusion contour for the GGM tan beta = 30 model.
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the R-slepton RPC model, and the selection of Z-veto signal regions used to set limits in this model. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bbb' means that the regions SR0noZb, SR1noZb and SR2noZb were used, in addition to the three Z-rich regions (SR0-2Z). For the RPC stau and Z models, the ``aaa' combination of regions was used throughout.
Performance of the SR0noZa selection in the R-slepton RPC model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0noZb selection in the RPV chargino NLSP model with lambda_121 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0Z selection in the GGM tan beta = 30 model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Cut flows for a representative selection of SUSY signal points in the Z-veto signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows for a representative selection of SUSY signal points in the Z-rich signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses (or the value of mu in the case of GGM models). The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0noZa signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPC R-slepton model is used, with (m2,m1) = (450,300) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR1noZb signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPV gluino NLSP model is used, with lambda_133 != 0 and (m2,m1) = (800,400) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0Z signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the value of mu. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The GGM tan beta = 30 model is used, with (m2,m1) = (200,1000) GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.