$J/\psi$ production cross section and its dependence on charged-particle multiplicity in $p+p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 786 (2018) 87-93, 2018.
Inspire Record 1672453 DOI 10.17182/hepdata.85057

We present a measurement of inclusive $J/\psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for $J/\psi$ as a function of transverse momentum ($p_T$) for $0

3 data tables

Top$:$ J/$\psi$ cross section times branching ratio as a function of pT in p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. Solid circles are from this analysis for |y| < 1; open circles and blue squares are the published results for |y| < 1 from STAR; triangles are the published results for |y| < 0.35 from PHENIX. Bars and boxes are statistical and systematic uncertainties, respectively. The curves are CEM (green), NLO NRQCD A (orange) [4], CGC + NRQCD (blue) , and NLO NRQCD B (magenta) theoretical calculations, respectively. Bottom$:$ ratios of these results with respect to the central value from this analysis.

The corrected $n_{ch}$ distributions at mid-rapidity (|$\eta$| < 1) for MB events (open circles) and J/$\psi$ events with J/$\psi$ $p_{T}$ greater than 0 (purple circles), 1.5 (blue squares), and 4 GeV/c (red triangles) in p+p collisions at $\sqrt{s}$ = 200 GeV. The fit function is a negative binomial function. Bars and boxes are statistical and systematic uncertainties, respectively.

The multiplicity dependence of J/$\psi$ production in p+p collisions at $\sqrt{s}$ = 200 GeV. Purple circles, blue squares, and red triangles represent the results for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. Bars and open boxes are statistical and systematic uncertainties, respectively. The ALICE result is shown in the left panel. The purple, blue and red bands in the middle panel are generated from PYTHIA8 for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. The blue and red bands in the right panel are from EPOS3 model calculations for D$^{0}$ with 2 < $p_{T}$ < 4 and 4 < $p_{T}$ < 8 GeV/c, respectively, while the green curve is from the Percolation model for J/$\psi$ with $p_{T}$ > 0 GeV/c.


$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

$\phi$ meson production in $d+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 92 (2015) 044909, 2015.
Inspire Record 1379995 DOI 10.17182/hepdata.142332

The PHENIX experiment has measured $\phi$ meson production in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $\phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $\phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $\phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.

8 data tables

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

More…

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

7 data tables

Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

A Determination of the strong coupling constant alpha-s from W production at the CERN p anti-p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 263 (1991) 563-572, 1991.
Inspire Record 315374 DOI 10.17182/hepdata.29394

The large sample of W→eν events collected by the UA2 experiment at the CERN pp̄ collider between 1988 and 1990 has been used to determine the strong coupling constant α s . From a measurement of the ratio of the production rate of W events with one jet to that with no jets, α s has been extracted to second order in the MS ̄ scheme: α s (M 2 w )=0.123±0.0.18( stat .)±0.017 ( syst .) .

1 data table

ALP_S extracted to second order in the MSbar scheme.


A Measurement of single and double prompt photon production at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 288 (1992) 386-394, 1992.
Inspire Record 336186 DOI 10.17182/hepdata.29113

A measurement of the cross-sections for single and double prompt photon production in p p interactions at s = 630 GeV is presented. The data sample corresponds to an integrated luminosity of 13.2 pb −1 . The results are in good agreement with the predictions of perturbative QCD. The signal from double prompt photon production has a statistical significance of 4.3 standard deviations.

2 data tables

There is an overall systematic error of 9 pct not included in the table.

Errors quoted include statistical and all PT dependent systematic uncertainties. There is in addition a 6.8 pct overall normalization uncertainty.


A Measurement of the W and Z production cross-sections and a determination of Gamma (W) at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 276 (1992) 365-374, 1992.
Inspire Record 319671 DOI 10.17182/hepdata.29256

The decays W → ev and Z → e + e − are studied in [ovbar|p]p collisions at √ s =630 GeV . The products of production cross section and branching ratio are measured as σ e w =682±12±40 pb and σ e w =65.6±4.0±3.8 pb. The results are in good agreement with O(α 2 s ) calculations of the production cross sections. Many systematic effects cancel in the ratio, R =10.4± 0.7 0.6 ±0.3, which can be used to give an indirect measurement of the total width of the W boson: Γ w =2.10±0.13±0.09 GeV . The width gives a limit on the top quark mass, m top >53 GeV (95% CL), which is independent of the top decay mode.

1 data table

No description provided.


A Measurement of the direct photon production cross-section at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 263 (1991) 544-550, 1991.
Inspire Record 315377 DOI 10.17182/hepdata.47328

A measurement of the inclusive cross-section for production of direct photons in p̄p collisions at a centre of mass energy of 630 GeV is presented as a function of the photon transverse momentum. The data correspond to a total integrated luminosity of 7.4 pb −1 . The results support predictions from QCD theory.

1 data table

No description provided.


A Measurement of the proton structure function f2 (x, Q**2)

The H1 collaboration Ahmed, T. ; Aid, S. ; Akhundov, Arif A. ; et al.
Nucl.Phys.B 439 (1995) 471-502, 1995.
Inspire Record 392680 DOI 10.17182/hepdata.45046

A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.

20 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of two jet decays of the W and Z bosons at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ansari, R. ; Ansorge, R.E. ; et al.
Z.Phys.C 49 (1991) 17-28, 1991.
Inspire Record 298412 DOI 10.17182/hepdata.15084

A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order αs2. A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.

1 data table

No description provided.