Date

Inclusive transverse momentum distributions of charged particles in diffractive and nondiffractive photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 67 (1995) 227-238, 1995.
Inspire Record 392037 DOI 10.17182/hepdata.44775

Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range $-1.2<\eta<1.4$ have been measured up to $p_{T}=8\GeV $ using the ZEUS detector. Diffractive and non--diffractive reactions have been selected with an average $\gamma p$ centre of mass (c.m.) energy of $\langle W \rangle = 180\GeV$. For diffractive reactions, the $p_{T}$ spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values $\langle M_{X} \rangle = 5$ GeV and $10$ GeV. The inclusive transverse momentum spectra fall exponentially in the low $p_{T}$ region. The non--diffractive data show a pronounced high $p_{T}$ tail departing from the exponential shape. The $p_{T}$ distributions are compared to lower energy photoproduction data and to hadron--hadron collisions at a similar c.m. energy. The data are also compared to the results of a next--to--leading order QCD calculation.

3 data tables

Rate of charged particle production in an average non-diffractive event.

Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 5 GeV.

Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 10 GeV.


Production of strange B baryons decaying into Xi-+ - lepton-+ pairs at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 541-554, 1995.
Inspire Record 393792 DOI 10.17182/hepdata.52371

None

2 data tables

HERE 'PRODUCTION FRACTION' IS PROBABILITY(BQ --> B-BARYON)*BR(B-BARYON --> XI- LEPTON- X). 'LEPTON' IS E OR MU.

No description provided.


Properties of high mass multi - jet events at the Fermilab proton - anti-proton collider

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 608-612, 1995.
Inspire Record 393345 DOI 10.17182/hepdata.52833

The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.

19 data tables

Exclusive 2-jet mass distribution.

Exclusive 3-jet mass distribution.

Exclusive 4-jet mass distribution.

More…

Measurement of the Hadronic Decay Current in tau- --> pi- pi- pi+ tau-neutrino

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 45-56, 1995.
Inspire Record 393414 DOI 10.17182/hepdata.52012

The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.

2 data tables

See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.

Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).


Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.


Few neutron removal from U-238 at relativistic energies

Aumann, T. ; Sümmerer, K. ; Geissel, H. ; et al.
Z.Phys.A 352 (1995) 163-169, 1995.
Inspire Record 393469 DOI 10.17182/hepdata.42069

As part of a comprehensive study of uranium fragmentation at relativistic energies at the GSI projectile fragment separator, FRS, inclusive neutron-removal cross sections have been measured for severalxn channels at projectile energies of 600 and 950A MeV using targets of Al, Cu and Pb. The variation of the experimental cross sections with target nuclear charge is used to disentangle nuclear and electromagnetic contributions. The electromagnetic cross sections agree surprisingly well with a simple harmonic oscillator calculation of giant dipole resonances based on measured photonuclear cross sections and do not require an extra enhancement of the two-phonon giant dipole excitation as concluded from similar measurements with197Au.

2 data tables

Uranium fragmentation.

Uranium fragmentation.


Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table

No description provided.


Extraction of the ratio F2(n) / F2(p) from muon - deuteron and muon - proton scattering at small x and Q**2

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 75 (1995) 1466-1470, 1995.
Inspire Record 393866 DOI 10.17182/hepdata.42379

The ratio of the deuteron to proton structure functions is measured at very small Bjorken x (down to 10–6) and for Q2>0.001 GeV2 from scattering of 470 GeV muons on liquid hydrogen and deuterium targets. The ratio F2n/F2p extracted from these measurements is found to be constant, at a value of 0.935±0.008±0.034, for x<0.01. This result suggests the presence of nuclear shadowing effects in the deuteron. The dependence of the ratio on Q2 is also examined; no significant variation is found.

2 data tables

F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1.

F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1. The systematic uncertainty in the Q**2 dependece is negligible as compared to the statistical uncertainty.


First Measurement of the Deep--Inelastic Structure of Proton Diffraction

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 348 (1995) 681-696, 1995.
Inspire Record 393286 DOI 10.17182/hepdata.45003

A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton scattering. The diffractive contribution to the proton structure function is evaluated as a function of the appropriate deep-inelastic scattering variables using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. The dependence of this contribution on x-pomeron is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of a factorised structure function is presented. This structure function is observed to be consistent with scale invariance.

19 data tables

No description provided.

No description provided.

No description provided.

More…

Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 348 (1995) 665-680, 1995.
Inspire Record 392980 DOI 10.17182/hepdata.44999

Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

2 data tables

Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.

Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.