We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.
Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies $\sqrt{s} >$ 4.4 GeV, the processes $e^+e^- \rightarrow \omega \chi_{c1,2}$ are observed for the first time. With an integrated luminosity of $1074 pb^{-1}$ near $\sqrt{s} =$ 4.42 GeV, a significant $\omega \chi_{c2}$ signal is found, and the cross section is measured to be $(20.9 \pm 3.2 \pm 2.5)\pb$. With $567 pb^{-1}$ near $\sqrt{s} =$ 4.6 GeV, a clear $\omega \chi_{c1}$ signal is seen, and the cross section is measured to be $(9.5 \pm 2.1 \pm 1.3) \pb$, while evidence is found for an $\omega \chi_{c2}$ signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the $\omega \chi_{c2}$ cross section, an enhancement is seen around $\sqrt{s} =$ 4.42 GeV. Fitting the cross section with a coherent sum of the $\psi(4415)$ Breit-Wigner function and a phase space term, the branching fraction $\mathcal{B}(\psi(4415)\to\omega\chi_{c2})$ is obtained to be of the order of $10^{-3}$.
Results on $e^+e^-\to \omega \chi_{c0}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1+\delta)\frac{1}{|1-\Pi|^{2}}(\epsilon_{\pi}\mathcal{B}(\chi_{c0}\to\pi^+\pi^-)+\epsilon_{K}\mathcal{B}(\chi_{c0}\to K^+K^-))\mathcal{B}(\omega\to\pi^+\pi^{-}\pi^{0})\mathcal{B}(\pi^{0}\to\gamma\gamma)$ for $\omega\chi_{c0}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point.
Results on $e^+e^-\to \omega \chi_{c1}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c1}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c1}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Results on $e^+e^-\to \omega \chi_{c2}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c2}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c2}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.
The cross section and forward-backward muon charge asymmetry for the e + e − → μ + μ − γ reaction were measured to be σ =2.82±0.35 pb and A =−0.34±0.10 with the VENUS detector at TRISTAN at 〈√ s 〉=59.2GeV for an integrated luminosity of 53.5 pb −1 . The measured cross section agrees with the theoretical prediction. The asymmetry result is consistent with the electroweak prediction but not with the QED prediction at the level of 2 σ .
No description provided.
No description provided.
We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process $e^+e^-\rightarrow \pi\pi X$ based on a data set of 62 $\rm{pb}^{-1}$ at the center-of-mass energy $\sqrt{s}=3.65$ GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.
Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.
Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.
The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.
The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.
We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.
Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.
Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.
Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.
Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.
Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.