The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.
No description provided.
Additional 7 pct systematic error.
Additional 23 pct systematic error.
The production of the χ1 and χ2 states of charmonium has been observed in 300 GeV/c π±N and pN interactions. The fraction of the total inclusive J/ψ production due to radiative χ decay has been determined to be 0.40±0.04, 0.37±0.03, and 0.30±0.04 for the π+, π−, and proton data, respectively. Total cross sections have been obtained of 131±18±14 and 188±30±21 nb/nucleon in the 300 GeV/c π−N interactions for χ1 and χ2 production. By measuring the contributions to the J/ψ production due to both ψ’ and radiative χ decay, the cross sections for direct J/ψ production have been determined to be 97±14, 102±14, and 89±12 nb/nucleon for π+, π−, and protons, respectively.
Fractions of total J/PSI production due to radiative CHI1 and CHI2 decays.
Fractions of total J/PSI production due to radiative CHI1 and CHI2 decays.
Fractions of total J/PSI production due to radiative CHI1 and CHI2 decays.
Hadroproduction of the Jψ and ψ′ states has been studied in 300-GeV/c proton, antiproton, and π±Li interactions. Both total and differential cross sections in xF and pT have been measured for the Jψ for the π±, proton, and antiproton interactions. The ratio of ψ′ to Jψ production has been determined for the four types of beam particles.
No description provided.
No description provided.
No description provided.
We present total and differential cross sections for charm mesons produced in 600 GeV/ c π - emulsion interactions. Fits to d 2 σ / dx F dp T 2 ∞ (1−| x F |) n exp (- bp T 2 ) for 676 electronically reconstructed D mesons with x F >0 give n =4.25±0.24 ( stat .)±0.23 ( syst .) and b =0.76±0.03±0.03 ( GeV / c ) -2 . The total inclusive D + and D 0 cross sections are σ ( π - N → D ± ; x F >0) = 8.66±0.46±1.96 μb nucleon and σ(π - N→D 0 D 0 ; x F >0)=22.05±1.37±4.82μb nucleonk, where a linear dependence on the mean atomic weight of the target is assumed. These results are compared to next-to-leading order QCD predictions.
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail). The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence.
A measurement of the cross-sections for single and double prompt photon production in p p interactions at s = 630 GeV is presented. The data sample corresponds to an integrated luminosity of 13.2 pb −1 . The results are in good agreement with the predictions of perturbative QCD. The signal from double prompt photon production has a statistical significance of 4.3 standard deviations.
There is an overall systematic error of 9 pct not included in the table.
Errors quoted include statistical and all PT dependent systematic uncertainties. There is in addition a 6.8 pct overall normalization uncertainty.
Using data from the NA32 experiment at CERN we have studied the Λ + c decays containing a Σ + among the decay products. The interactions of 230 GeV π − with a Cu target were analysed using a precise vertex telescope (charge-coupled devices and silicon microstrip detectors) and the ACCMOR spectrometer. We have found eleven Λ + c →Σ + π + π − , one Λ + c →Σ + K + K − , two Λ + c →Σ + K + π − and one Λ + c →Σ + π + π − π + π − decays practically without any backgroun d. We have measured the branching ratios with respect to the Λ + c →pK − π + channel.
No description provided.
Total interaction cross sections have been measured for 8 Li on C and Pb targets, for 9 Li on C, Al, Cu, Sn and Pb targets, as well as for 11 Li on C, Sn and Pb targets at about 80 MeV/nucleon. In addition, 2n-removal cross sections for 11 Li have been extracted. These measurements are used to determine the nuclear and the electromagnetic part of the cross sections for the different projectile-target combinations. The experimental results are compared to different model calculations. These comparisons allow one to draw conclusions on the matter density distribution of the neutron-rich lithium isotope 11 Li. By comparing our data on the electromagnetic dissociation of 11 Li with all the other data available in the literature, we are able to put constraints on the dipole-strength distribution in 11 Li.
Axis error includes +- 0.0/0.0 contribution (?////).
The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.
The CONST(N=LAMBDA-QCD) is extracted from the measurement of scaling violations of the nonsinglet structure function.
We present a measurement of jet shapes in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab (CDF). Qualitative agreement is seen with the predictions of recent next-to-leading [O(αs3)] calculations and with leading logarithm QCD based Monte Carlo simulations. The dependence of the jet shape on transverse energy is studied.
No description provided.
Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.
No description provided.
No description provided.
No description provided.