Date

Search for $t\bar tH/A \rightarrow t\bar tt\bar t$ production in the multilepton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 203, 2023.
Inspire Record 2175533 DOI 10.17182/hepdata.135458

A search for a new heavy scalar or pseudo-scalar Higgs boson ($H/A$) produced in association with a pair of top quarks, with the Higgs boson decaying into a pair of top quarks ($H/A\rightarrow t\bar{t}$) is reported. The search targets a final state with exactly two leptons with same-sign electric charges or at least three leptons. The analysed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Two multivariate classifiers are used to separate the signal from the background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of a type-II two-Higgs-doublet model. The observed (expected) upper limits at 95% confidence level on the $t\bar{t}H/A$ production cross-section times the branching ratio of $H/A\rightarrow t\bar{t}$ range between 14 (10) fb and 6 (5) fb for a heavy Higgs boson with mass between 400 GeV and 1000 GeV, respectively. Assuming that only one particle, either the scalar $H$ or the pseudo-scalar $A$, contributes to the $t\bar{t}t\bar{t}$ final state, values of $\tan\beta$ below 1.2 or 0.5 are excluded for a mass of 400 GeV or 1000 GeV, respectively. These exclusion ranges increase to $\tan\beta$ below 1.6 or 0.6 when both particles are considered.

23 data tables

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the sum of the leading four jets b-tagging scores.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the number of jets.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the BSM pBDT: SM BDT.

More…

Jet-like correlations with respect to K$^{0}_{\rm S}$ and $\Lambda$ ($\bar{\Lambda}$) in pp and Pb-Pb collisions at $\mathbf{\it\sqrt{s_\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 497, 2023.
Inspire Record 2175449 DOI 10.17182/hepdata.140841

Two-particle correlations with ${\rm K}^{0}_{\rm{S}}$, $\Lambda$/$\bar{\Lambda}$, and charged hadrons as trigger particles in the transverse momentum range $8 < p_\mathrm{T,trig}<16$ GeV/$c$, and associated charged particles within $1 < p_\mathrm{T,assoc}<8$ GeV/$c$, are studied at mid-rapidity in pp and central Pb-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE detector at the LHC. After subtracting the contributions of the flow background, the per-trigger yields are extracted on both the near and away sides, and the ratio in Pb-Pb collisions with respect to pp collisions ($I_{\mathrm {AA}}$) is computed. The per-trigger yield in Pb-Pb collisions on the away side is strongly suppressed to the level of $I_{\mathrm {AA}} \approx 0.6$ for $p_\mathrm{T,assoc}>3$ GeV/$c$ as expected from strong in-medium energy loss, while an enhancement develops at low $p_\mathrm{T,assoc}$ on both the near and away sides, reaching $I_{\mathrm {AA}} \approx 1.8$ and $2.7$ respectively. These findings are in good agreement with previous ALICE measurements from two-particle correlations triggered by neutral pions ($\pi^{0}$-h) and charged hadrons (h-h) in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. Moreover, the correlations with ${\rm K}^{0}_{\rm{S}}$ mesons and $\Lambda$/$\bar{\Lambda}$ baryons as trigger particles are compared to those of inclusive charged hadrons. The results are compared with the predictions of Monte Carlo models.

7 data tables

Distributions of $C(\Delta\varphi)$ for h$-$h, K$^{0}_\mathrm{S}$-h,and ($\Lambda+\overline{\Lambda})-$h as trigger particles with $8 < p_\mathrm{T,trig}<16 \mathrm{GeV}/c$ and associated particles with $4 < p_\mathrm{T,assoc}<6$ GeV/$c$ in $0-10\%$ central Pb$-$Pb and pp collisions. The background has been subtracted based on the estimation of ZYAM in pp collisions and the additional contributions of the anisotropic flow harmonics $v_{2}$ and $v_{3}$ in Pb$-$Pb collisions.

Near-side of per-trigger yield modification, ($I_{\mathrm{AA}}$), of h$-$h, K$^{0}_\mathrm{S}$-h,and $(\Lambda+\overline{\Lambda})-$h trigger momentum range is $8< p_{T}^{trig} < 16~\mathrm{GeV}/c$, and associated charged particle momentum ranges which are showen in the table down.

Away-side of per-trigger yield modification, ($I_{\mathrm{AA}}$), of h$-$h, K$^{0}_\mathrm{S}-$h,and $(\Lambda+\overline{\Lambda})-$h trigger momentum range is $8< p_{T}^{trig} < 16~\mathrm{GeV}/c$, and associated charged particles momentum ranges which are showen in the table down.

More…

Search for the Chiral Magnetic Effect with charge-dependent azimuthal correlations in Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 856 (2024) 138862, 2024.
Inspire Record 2172062 DOI 10.17182/hepdata.153409

Charge-dependent two- and three-particle correlations measured in Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV are presented. Results are obtained for charged particles in the pseudorapidity range $|\eta|<0.8$ and transverse momentum interval $0.2 \le p_{\rm T}<5.0$ GeV/$c$ for different collision centralities. The three-particle correlator ${\gamma_{\alpha\beta}} \equiv {\langle \cos(\varphi_\alpha + \varphi_\beta - 2{\Psi_{\rm 2}}) \rangle}$, calculated for different combinations of charge sign $\alpha$ and $\beta$, is expected to be sensitive to the presence of the Chiral Magnetic Effect (CME). Its magnitude is similar to the one observed in Pb-Pb collisions in contrast to a smaller CME signal in Xe-Xe collisions than in Pb-Pb collisions predicted by Monte Carlo (MC) calculations including a magnetic field induced by the spectator protons. These observations point to a large non-CME contribution to the correlator. Furthermore, the charge dependence of ${\gamma_{\alpha\beta}}$ can be described by a blast wave model calculation that incorporates background effects and by the Anomalous Viscous Fluid Dynamics model with values of the CME signal consistent with zero. The Xe-Xe and Pb-Pb results are combined with the expected CME signal dependence on the system size from the MC calculations including a magnetic field to obtain the fraction of CME contribution in ${\gamma_{\alpha\beta}}$, $f_{\rm CME}$. The CME fraction is compatible with zero for the 30% most central events in both systems and then becomes positive. This yields an upper limit of 2% (3%) and 25% (32%) at 95% (99.7%) confidence level for the CME signal contribution to ${\gamma_{\alpha\beta}}$ in the 0-70% Xe-Xe and Pb-Pb collisions, respectively.

16 data tables

$\langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$ (opposite charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.

$\langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$ (same charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.

$\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{2}) \rangle$ (opposite charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.

More…

Measurements of the elliptic and triangular azimuthal anisotropies in central $^{3}$He+Au, $d$+Au and $p$+Au collisions at $\mbox{$\sqrt{s_{\mathrm{NN}}}$}$ = 200 GeV

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 130 (2023) 242301, 2023.
Inspire Record 2167879 DOI 10.17182/hepdata.134955

The elliptic ($v_2$) and triangular ($v_3$) azimuthal anisotropy coefficients in central $^{3}$He+Au, $d$+Au, and $p$+Au collisions at $\mbox{$\sqrt{s_{\mathrm{NN}}}$}$ = 200 GeV are measured as a function of transverse momentum ($p_{\mathrm{T}}$) at mid-rapidity ($|\eta|<$0.9), via the azimuthal angular correlation between two particles both at $|\eta|<$0.9. While the $v_2(p_{\mathrm{T}})$ values depend on the colliding systems, the $v_3(p_{\mathrm{T}})$ values are system-independent within the uncertainties, suggesting an influence on eccentricity from sub-nucleonic fluctuations in these small-sized systems. These results also provide stringent constraints for the hydrodynamic modeling of these systems.

5 data tables

v2 and v3 in 0-10% He+Au collisions at 200 GeV

v2 and v3 in 0-10% d+Au collisions at 200 GeV

v2 and v3 in UC p+Au collisions at 200 GeV

More…

Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137782, 2023.
Inspire Record 2165935 DOI 10.17182/hepdata.138430

The study of the azimuthal anisotropy of inclusive muons produced in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, $v_2$, is performed as a function of transverse momentum $p_{\rm T}$ in the 0-20% high-multiplicity interval at both forward ($2.03 < y_{\rm CMS} < 3.53$) and backward ($-4.46 < y_{\rm CMS} < -2.96$) rapidities over a wide $p_{\rm T}$ range, $0.5 < p_{\rm T} < 10$ GeV/$c$, in which a dominant contribution of muons from heavy-flavour hadron decays is expected at $p_{\rm T} > 2$ GeV/$c$. The $v_2$ coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward-central two-particle correlations. Both techniques give compatible results. A positive $v_2$ is measured at both forward and backward rapidities with a significance larger than $4.7\sigma$ and $7.6\sigma$, respectively, in the interval $2 < p_{\rm T} < 6$ GeV/$c$. Comparisons with previous measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems.

12 data tables

Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle correlation method at forward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.

Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle cumulant method at forward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.

Inclusive muon $v_{2}^{\mu}$ as a function of $p_{\mathrm{T}}$ is measured by two-particle correlation method at backward rapidities in high-multiplicity (0$-$20%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$= 8.16 TeV. The event activity is estimated with the V0M estimator.

More…

$\psi(2S)$ suppression in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 132 (2024) 042301, 2024.
Inspire Record 2165947 DOI 10.17182/hepdata.145654

The production of the $\psi(2S)$ charmonium state was measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity ($2.5

6 data tables

Ratio of the $\psi$(2S) over J/$\psi$ cross sections, not corrected for the branching ratio, shown as a function of centrality

Double ratio of the $\psi$(2S) over J/$\psi$ cross sections in Pb--Pb and pp collisions shown as a function of centrality

Nuclear modification factor of the $\psi$(2S) shown as a function of centrality

More…

Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 188, 2023.
Inspire Record 2163275 DOI 10.17182/hepdata.135703

A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015-2018) data set of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. Scalar leptoquarks with charge -(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e are considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation ($e, \mu, \nu$) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recent B-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models.

27 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>95% CL limits on the production cross-section for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> </ul> <b>Product of signal acceptance and efficiency in the training region for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> </ul> <b>Cut-flow for:</b> <ul> <li><a href="135703?version=1&table=Scalar%20LQs%20cut-flow">scalar LQs</a> <li><a href="135703?version=1&table=Vector%20LQs%20cut-flow">vector LQs</a> </ul>

Observed 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

Expected 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

More…

A search for new resonances in multiple final states with a high transverse momentum $Z$ boson in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 036, 2023.
Inspire Record 2158974 DOI 10.17182/hepdata.132793

A generic search for resonances is performed with events containing a $Z$ boson with transverse momentum greater than 100 GeV, decaying into $e^+e^-$ or $\mu^+\mu^-$. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb$^{-1}$. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode $W'\to ZW \to \ell\ell qq$.

62 data tables

Results of applying the BH algorithm to the mass spectra in the leading small-R jet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading bjet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading large-R jet category, using the fitted background estimations from the initial step

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Search for resonant and non-resonant Higgs boson pair production in the $b\bar b\tau^+\tau^-$ decay channel using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 040, 2023.
Inspire Record 2155171 DOI 10.17182/hepdata.130794

A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.

51 data tables

Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.

Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis

Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.

More…