Date

Subject_areas

Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 649 (2007) 12-24, 2007.
Inspire Record 736199 DOI 10.17182/hepdata.45795

Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q^2 > 125 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb^-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q^2 and the jet transverse energy, E_T,B^jet. The dependence on R of the inclusive-jet cross section has been measured for Q^2 > 125 and 500 GeV^2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 <= R <= 1. A value of alpha_s(M_Z) has been extracted from the measurements of the inclusive-jet cross-section dsigma/dQ^2 with R=1 for Q^2 > 500 GeV^2: alpha_s(M_Z) = 0.1207 +- 0.0014 (stat.) -0.0033 +0.0035 (exp.) -0.0023 +0.0022 (th.). The variation of alpha_s with E_T,B^jet is in good agreement with the running of alpha_s as predicted by QCD.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Substructure dependence of jet cross sections at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Loizides, J.H. ; et al.
Nucl.Phys.B 700 (2004) 3-50, 2004.
Inspire Record 650732 DOI 10.17182/hepdata.46136

Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.

31 data tables

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with -1 < ETARAP(C=JET) < 2.5.

More…

Jet production in charged current deep inelastic e+ p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 31 (2003) 149-164, 2003.
Inspire Record 620434 DOI 10.17182/hepdata.46434

The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, <n_sbj>, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from <n_sbj> at y_cut=0.01 for jets with 25<E_T(jet)<119 GeV, is alphas(M_Z) = 0.1202 +-0.0052 (stat.) +0.0060-0.0019 (syst.) +0.0065-0.0053 (th.). The mean subjet multiplicity as a function of Q**2 is found to be consistent with that measured in NC DIS.

20 data tables

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.

Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.

More…

Measurement of alpha(s) using NLLA + O (alpha-s**2) in e+ e- annihilation at s**(1/2) = 58-GeV

The AMY collaboration Kim, D.Y. ; Kang, J.S. ; Myung, S.S. ; et al.
Phys.Lett.B 420 (1998) 233-240, 1998.
Inspire Record 455114 DOI 10.17182/hepdata.28221

A measurement of the strong coupling constant α S is presented using hadronic events produced in e + e − annihilations at s =58.0 GeV from the AMY detector at TRISTAN. The measurement is based on comparisons of the distributions of thrust, heavy jet mass, total jet broadening, wide jet broadening, and energy-energy correlations with QCD calculations resummed up to next-to-leading-logarithms matched with the O ( α S 2 ) perturbative calculation. Combining the results of the individual evaluations, we find α S (58 GeV )=0.132±0.006 .

1 data table

No description provided.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Measurement of $\alpha_S$ from Jet Rates in Deep Inelastic Scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 363 (1995) 201-216, 1995.
Inspire Record 400436 DOI 10.17182/hepdata.44947

Jet production in deep inelastic scattering for $120<Q~2<3600$GeV$~2$ has been studied using data from an integrated luminosity of 3.2pb$~{-1}$ collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the $\gamma~*$-parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to ${\cal O}$($\alpha_{s}$~2$) perturbative QCD calculations, allow a precise determination of $\alpha_{s}(Q)$ in three $Q~2$-intervals. The values are consistent with a running of $\alpha_{s}(Q)$, as expected from QCD. Extrapolating to $Q=M_{Z~0}$ yields $\alpha_{s}(M_{Z~0}) = 0.117\pm0.005(stat)~{+0.004}_{-0.005}(syst_{exp}) {\pm0.007}(syst_{theory})$.

3 data tables

2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.

Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .

Strong coupling constant alpha_s extrapolated to the Z0 mass.


A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.


A Test of the flavor independence of strong interactions

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 53 (1996) 2271-2275, 1996.
Inspire Record 382002 DOI 10.17182/hepdata.22341

We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$

1 data table

No description provided.