In this letter, we present the first measurement of direct photons at the transverse momentum of $ 1 < p_{\rm T} < 6$ GeV/$c$ at midrapidity $|η| < 0.8$ in inelastic and high-multiplicity proton--proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV. The fraction of virtual direct photons in the inclusive virtual photon spectrum is obtained from a fit to the dielectron invariant mass spectrum. In the limit of zero invariant mass, this fraction is equal to the relative contribution of real direct photons in the inclusive real photon spectrum. Contributions from decays of light-flavour neutral mesons are estimated using independent measurements in proton-proton collisions at the same energy and the same event class. For the first time at the LHC energies, a direct-photon signal is observed at low $p_{\rm T}$ in both inelastic and high-multiplicity event classes, with a significance of 3.2$σ$ and 1.9$σ$ in terms of standard deviations, correspondingly. The yield of direct photons in inelastic pp collisions is compared to perturbative QCD calculations. The integrated photon yield is studied as a function of charged-particle multiplicity and is compared to the results from other experiments and theoretical calculations. The results show a significant increase of direct-photon yield with charged-particle multiplicity.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The dielectron cross section in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The direct-photon fraction r in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of transverse momentum for 1 < $p_{\rm T}$ < 6 GeV/$c$. r is the ratio of direct GAMMA to inclusive GAMMA.
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
A measurement of dielectron production in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron invariant mass $m_{\rm ee}$ and pair transverse momentum $p_{\rm T,ee}$ that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of $m_{\rm ee}$, $p_{\rm T,ee}$, and event multiplicity ${\rm d} N_{\rm ch}/{\rm d} \eta$. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured $\eta/\pi^0$ ratio in pp and proton-nucleus (p-A) collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at $0.15<m_{\rm ee}<0.6$ GeV/$c^2$ and for $p_{\rm T,ee} < 0.4$ GeV/$c$ indicates an enhancement of soft dielectrons, reminiscent of the 'anomalous' soft-photon and -dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to $1.61\pm 0.13\,(\rm{stat.})\pm 0.17\,(\rm{syst., data}) \pm 0.34\,(\rm{syst., cocktail})$ in the ALICE acceptance. Acceptance-corrected excess spectra in $m_{\rm ee}$ and $p_{\rm T,ee}$ are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach.
Differential dielectron cross section in pp collisions at $\sqrt{s}$ = 13 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
Differential dielectron cross section in pp collisions at $\sqrt{s}$ = 13 TeV in the invariant mass interval 0.15<$m_{\rm ee}$<0.6 as a function of $p_{\rm T,ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
Dielectron yield per event in the excess region(0.15<$m_{\rm ee}$<0.6, $p_{\rm T,ee}$<0.4) as a function of the event multiplicity. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.075$ GeV/$c$.
The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{ee}}$ < 3.5 GeV/$c^{2}$ and $p_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
Inclusive $e^+e^-$ cross section in p-Pb collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $p_{\rm T,ee}$ for $0.5 < m_{\rm ee} < 1.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.
The first measurement of e$^+$e$^-$ pair production at mid-rapidity ($|\eta_{{\rm e}}|$ $<$ 0.8) in pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC is presented. The dielectron production is studied as a function of the invariant mass ($m_{\rm ee}$ $<$ 3.3 GeV/$c^{2}$), the pair transverse momentum ($p_{\rm T,ee}$ $<$ 8 GeV/$c$), and the pair transverse impact parameter (DCA$_{{\rm ee}}$), i.e., the average distance of closest approach of the reconstructed electron and positron tracks to the collision vertex, normalised to its resolution. The results are compared with the expectations from a cocktail of known hadronic sources and are well described when PYTHIA is used to generate the heavy-flavour contributions. In the low-mass region (0.14 $<$ $m_{\rm ee}$ $<$ 1.1 GeV/$c^{2}$), prompt and non-prompt e$^+$e$^-$ sources can be separated via the DCA$_{\rm ee}$. In the intermediate-mass region (1.1 $<$ $m_{\rm ee}$ $<$ 2.7 GeV/$c^{2}$), a double-differential fit to the data in $m_{\rm ee}$ and $p_{\rm T,ee}$ and a fit of the DCA$_{\rm ee}$ distribution allow the total ${\rm c\overline c}$ and ${\rm b\overline b}$ cross sections to be extracted. Two different event generators, PYTHIA and POWHEG, can reproduce the shape of the two-dimensional $m_{\rm ee}$ and $p_{\rm T,ee}$ spectra, as well as the shape of the DCA$_{\rm ee}$ distribution, reasonably well. However, differences in the ${\rm c\overline c}$ and ${\rm b\overline b}$ cross sections are observed when using the generators to extrapolate to full phase space. Finally, the ratio of inclusive to decay photons is studied via the measurement of virtual direct photons in the transverse-momentum range 1 $<$ $p_{\rm T}$ $<$ 8 GeV/$c$. This is found to be unity within the statistical and systematic uncertainties and consistent with expectations from next-to-leading order perturbative quantum chromodynamic calculations.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $m_{\rm ee}$.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $p_{\rm T,ee}$ for $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.
Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $\rm DCA_{ee}$ for 0.08 < $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.
The measurement of dielectron production is presented as a function of invariant mass and transverse momentum ($p_{\rm T}$) at midrapidity ($|y_{\rm e}|<0.8$) in proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at $\sqrt{s}=7$ TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=974\pm138(\rm{stat.})\pm140(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=79\pm14(\rm{stat.})\pm11(\rm{syst.})~\mu{\rm b}$ using PYTHIA simulations and ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=1417\pm184(\rm{stat.})\pm204(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=48\pm14(\rm{stat.})\pm7(\rm{syst.})~\mu{\rm b}$ for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various $p_{\rm T}$ intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of $p_{\rm T}$. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for $p_{\rm T,ee}$ < 6.0 GeV/$c$.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of pair transverse momentum for $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of pair transverse momentum for 0.14 < $m_{\rm ee}$ < 0.7 GeV/$c^{2}$.
The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma+ pi-, Sigma- pi+ and Sigma0 pi0 final states, from threshold at 1328 MeV/c^2 through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 \Lambda(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the Sigma0(1385) and from K^* Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NKbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J^P = 1/2^- amplitude with a centroid at 1394\pm20 MeV/c^2 and a second I=1 amplitude at 1413\pm10 MeV/c^2. The centroid of the I=0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 1.95 to 2.05 GeV corresponding to incident photon energies from 1.56 to 1.77 GeV.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.05 to 2.15 GeV corresponding to incident photon energies from 1.77 to 1.99 GeV.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.15 to 2.25 GeV corresponding to incident photon energies from 1.99 to 2.23 GeV.
The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.
The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.
Inclusive dijet cross-sections ${d\sigma/dx_{\rm{Bj}}}$. Other details as in the caption to Table 1.
Inclusive dijet cross-sections ${d\sigma/d\overline{E^{jet}_{T,B}}}$. Other details as in the caption to Table 1.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Proton structure function F2 at Q**2 = 25 GeV**2.
Proton structure function F2 at Q**2 = 35 GeV**2.
Proton structure function F2 at Q**2 = 45 GeV**2.