We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.
$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.
Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.
$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.
The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.
The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).
The exclusive photoproduction of J/psi mesons, gamma p->J/psi p, has been studied in ep collisions with the ZEUS detector at HERA, in the kinematic range 20
The total exclusive J/PSI photoproduction cross section, the differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence as afunction of W, the photon-proton c.m. energy, for data from J/PSI muon decay.
The total exclusive J/PSI photoproduction cross section as a function of W,the photon-proton c.m. energy, for data from J/PSI electron decays.
The differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence for exclusive J/PSI photoproduction as a function of W, the photon-proton c.m. energy for data from J/PSI electron decays.
The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.
The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.
The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.
The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.
We have searched for second generation leptoquark (LQ) pairs in the \mu\mu+jets channel using 94+-5 pb^{-1} of pbar-p collider data collected by the D0 experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the \mu\nu+jets and \nu\nu+jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and $beta, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of 200(180) GeV/c^2 for \beta=1(1/2) are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of \beta.
No description provided.
First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.
The differential cross section for inclusive photoproduction of isolated photons.
Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.
This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.
The forward muon cross section (per unit rapidity).
The cross section for muons originating from b-quark decay.
Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.
We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.
No description provided.
The errors are combinations of statistical and systematic uncertainties.
The distribution of MU+ MU- azimuthal angle difference.
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.