We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.
Measured partial decay rates $\Delta\Gamma$ (in units of $10^{-15}$ GeV)
Average of normalized decay rates over $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays
Full experimental (statistical and systematic) correlations (in \%) of the partial decay rates for the $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays.
The production cross sections of ${\rm D^0}$ and $\Lambda^+_{\rm c}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity ($|y|<0.5$) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy $\sqrt{s}=13$ TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is ${\rm d}\sigma_{\rm b\overline{b}}/{\rm d}y|_{|y|<0.5} = 83.1 \pm 3.5 (\mathrm{stat.}) \pm 5.4(\mathrm{syst.}) ^{+12.3}_{-3.2} (\mathrm{extrap.})\,\mu$b. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt $\Lambda^+_{\rm c}/{\rm D^0}$ production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p$/\pi^+$ and $\Lambda/{\rm K^0_S}$ ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The $p_{\rm T}$-integrated non-prompt $\Lambda_{\rm c}/{\rm D^0}$ ratio is found to be significantly higher than the one measured in e$^+$e$^-$ collisions.
$p_{\mathrm{T}}$-differential D$^{0}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV
$p_{\mathrm{T}}$-differential $\Lambda_\mathrm{c}^{+}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV
$p_{\mathrm{T}}$-differential non-prompt $\Lambda_\mathrm{c}^{+}$/non-prompt D$^{0}$ ratio in pp collisions at $\sqrt{s}$ = 13 TeV
Measurements of the production cross sections of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{\ast +}}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, and ${\rm \Xi_{c}^{+}}$ charm hadrons at midrapidity in proton$-$proton collisions at $\sqrt{s}=13$ TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum ($p_{\rm T}$) are provided with improved precision and granularity. The ratios of $p_{\rm T}$-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-$x$ ($10^{-5}-10^{-4}$). The measurements of ${\rm \Lambda_{c}^{+}}$ (${\rm \Xi_{c}^{+}}$) baryon production extend the measured $p_{\rm T}$ intervals down to $p_{\rm T}=0(3)$~GeV$/c$. These measurements are used to determine the charm-quark fragmentation fractions and the ${\rm c\overline{c}}$ production cross section at midrapidity ($|y|<0.5$) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, ${\rm \Xi_{c}^{0}}$ and, for the first time, ${\rm \Xi_{c}^{+}}$, and of the strongly-decaying J/$psi$ mesons. The first measurements of ${\rm \Xi_{c}^{+}}$ and ${\rm \Sigma_{c}^{0,++}}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e$^+$e$^-$ and ep collisions. The ${\rm c\overline{c}}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.
$p_{\mathrm{T}}$-differential $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{*+}\rightarrow\mathrm{D}^0(\rightarrow\mathrm{K}^-\pi^+)\pi^+$: $(2.67 \pm 0.03)\%$. Global relative uncertainty on BR: $1.1\%$ Global relative uncertainty on luminosity: $1.6\%$
We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.
Observed values of all angular asymmetry variables.
Full experimental covariance matrix of all angular asymmetry variables.
The elliptic flow ($v_2$) of $\rm D^0$ mesons from beauty-hadron decays (non-prompt $\rm D^0$) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The $\rm D^0$ mesons were reconstructed at midrapidity ($|y|<0.8$) from their hadronic decay $\mathrm{D^0 \to K^-\pi^+}$, in the transverse momentum interval $2 < p_{\rm T} < 12$ GeV/$c$. The result indicates a positive $v_2$ for non-prompt $\rm D^0$ mesons with a significance of 2.7$\sigma$. The non-prompt $\rm D^0$-meson $v_2$ is lower than that of prompt non-strange D mesons with 3.2$\sigma$ significance in $2 < p_{\rm T} < 8$ GeV/$c$, and compatible with the $v_2$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
$p_\mathrm{T}$-differential elliptic flow coefficient $v_2$ of non-prompt $\mathrm{D^0}$ mesons in the 30-50% centrality class in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$.
In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.
Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.
Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).
Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).
The cross section for coherent photonuclear production of J/$\psi$ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Cross sections are presented in five different J/$\psi$ rapidity ranges within $|y|<4$, with the J/$\psi$ reconstructed via its dilepton decay channels. In some events the J/$\psi$ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range $17 < W_{\gamma\, \mathrm{Pb, n}} <920$ GeV, where $W_{\gamma\, \mathrm{Pb, n}}$ is the centre-of-mass energy per nucleon of the $\gamma\,\mathrm{Pb}$ system. This range corresponds to a Bjorken-$x$ interval spanning about three orders of magnitude: $ 1.1\times10^{-5}<x<3.3\times 10^{-2}$. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.
Measured coherent J/psi cross section for the 0N0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.
Measured coherent J/psi cross section for the 0NXN+XN0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.
Measured coherent J/psi cross section for the XN0N forward class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.
The interaction between $\Lambda$ baryons and kaons/antikaons is a crucial ingredient for the strangeness $S=0$ and $S=-2$ sector of the meson$-$baryon interaction at low energies. In particular, the $\Lambda{\mathrm{\overline{K}}}$ might help in understanding the origin of states such as the $\Xi\mathrm{(1620)}$, whose nature and properties are still under debate. Experimental data on $\Lambda$$-$${\mathrm{K}}$ and $\Lambda$$-$${\mathrm{\overline{K}}}$ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of $\Lambda$$-$K$^+\oplus \overline{\Lambda}$$-$K$^-$ and $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations obtained in the high-multiplicity triggered data sample in pp collisions at $\sqrt{s}=13$ TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednicky$-$Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations show the presence of several structures at relative momenta $k^*$ above 200 MeV/$c$, compatible with the $\Omega$ baryon, the $\Xi\mathrm{(1690)}$, and $\Xi\mathrm{(1820)}$ resonances decaying into $\Lambda$$-$K$^-$ pairs. The low $k^*$ region in the $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ also exhibits the presence of the $\Xi\mathrm{(1620)}$ state, expected to strongly couple to the measured pair. The presented data allow to access the $\Lambda$K$^+$ and $\Lambda$K$^-$ strong interaction with an unprecedented precision and deliver the first experimental observation of the $\Xi\mathrm{(1620)}$ decaying into $\Lambda$K$^-$.
$\Lambda K^{-}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
$\Lambda K^{+}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
$C_{background}$ correlation for $\Lambda K^{+}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.
Inclusive JPSI pair cross section in $2.5 < y < 4.0$.
The interactions of kaons (K) and antikaons ($\mathrm{\overline{K}}$) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and $\mathrm{\overline{K}}$NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlations measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.
The (p-p)-K$^+$ correlation function obtained using the data-driven approach.
The p-(p-K$^+$) correlation function obtained using the data-driven approach.
Lower-order contributions to the p-p-K$^+$ correlation function obtained using the data-driven approach.