Evidence of the Cabibbo Suppressed Decay $\Lambda_c^+ \to p K^- K^+$

The E687 collaboration Frabetti, P.L. ; Cheung, H.W.K. ; Cumalat, John P. ; et al.
Phys.Lett.B 314 (1993) 477-481, 1993.
Inspire Record 356600 DOI 10.17182/hepdata.42675

We report evidence for the Cabibbo-suppressed decay of the charm baryon Λ c + into the final state pK − K + . The analysis is performed on data collected by high energy photoproduction experiment E687 during the 1990–1991 Fermilab fixed target run. The branching ratio of the decay Λ c + → pK − K + relative to the non-suppressed Λ c + → pK − π + is measured to be BR( pK − K + / pK − π + ) = 0.096 ± 0.029 ± 0.010. The upper limit of the decay into pø relative to the inclusive pK − K + decay is measured to be BR( pø / pK − K + < 58% at the 90% confidence level.

2 data tables

Branching ratio of Cabibbo-suppressed and resolved modes.

No description provided.


Coupled channel analysis of anti-p p annihilation into pi0 pi0 pi0, pi0 eta eta and pi0 pi0 eta

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 355 (1995) 425-432, 1995.
Inspire Record 406130 DOI 10.17182/hepdata.28523

We confirm the existence of the two I G ( J PC ) = 0 + (0 ++ ) resonances f 0 (1370) and f 0 (1500) reported by us in earlier analyses. The analysis presented here couples the final states π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη of p p annihilation at rest. It is based on a 3 × 3 K -matrix. We find masses and widths of M = (1390±30) MeV, Γ = (380±80) MeV; and M = (1500±10) MeV, Γ = (154 ± 30) MeV, respectively. The product branching ratios for the production and decay into π 0 π 0 and ηη of the f 0 (1500) are (1.27 ± 0.33) · 10 −3 and (0.60 ± 0.17) · 10 −3 , respectively.

1 data table

No description provided.


First observation of the production of nucleon resonances in anti-proton annihilation in liquid deuterium

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Augustin, I. ; et al.
Phys.Lett.B 352 (1995) 187-192, 1995.
Inspire Record 405540 DOI 10.17182/hepdata.28705

None

1 data table

No description provided.


Observation of radiative anti-p p annihilation into a phi meson

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Augustin, I. ; et al.
Phys.Lett.B 346 (1995) 363-370, 1995.
Inspire Record 401140 DOI 10.17182/hepdata.28709

The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.

1 data table

No description provided.


E decay to eta pi pi in anti-p p annihilation at rest

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 358 (1995) 389-398, 1995.
Inspire Record 407517 DOI 10.17182/hepdata.28511

We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.

1 data table

Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.


First observations of Pontecorvo reactions with a recoiling neutron

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Augustin, I. ; et al.
Z.Phys.A 351 (1995) 325-331, 1995.
Inspire Record 407110 DOI 10.17182/hepdata.16505

We report the first observations of Pontecorvo reactions of the type ¯pd →Xn. We fully reconstruct the outgoing meson and, for antiprotons stopped in liquid deuterium, we measure: BR(¯pd→π0)=(7.03±0.72)×10−6, BR(¯pd→ηn)=(3.19+0.48)×10−6, BR(¯pd→ωn)=(22.8+4.1)×10−6, BR(¯pd→η′n)14×10−6 (at 95% confidence level). Assuming charge independence, our result for¯ pd→π0n is compatible with measurements of the only other observed Pontecorvo reaction ¯pd → π−p. The experimental ratios between the above branching ratios are in fair agreement with both the statistical model and dynamical two-step models (assumingN¯ N annihilation into two mesons, with subsequent absorption of one meson on the remaining nucleon). This agreement suggests that there may be appreciable rates for Pontecorvo reactions producing final state mesons with masses above 1 GeV.

1 data table

No description provided.


A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


Measurement of the average b baryon lifetime and the product branching ratio f (b --> Lambda(b)) x BR (Lambda(b) --> Lambda lepton- anti-neutrino X)

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 69 (1996) 195-214, 1996.
Inspire Record 397395 DOI 10.17182/hepdata.51966

None

1 data table

Charged conjugate state is assumed.


Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

2 data tables

No description provided.

The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').


Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.