Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

4 data tables

Measurement of $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ for all centralities and a broad $\eta$ range. Combined and symmetrised $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ over 30-90 PCT centrality from both SPD and FMD. Previously published results for 0-30 PCT over the full pseudorapidity range available elsewhere [PLB726.610]. Please note the systematic uncertainty from the centrality determination is encoded as a qualifier in the table header.

Full--width half--maximum of the charged--particle pseudorapidity distributions versus the average number of participants. The uncertainties on the ALICE measurements are from the fit of $f_{\text{GG}}$ only and evaluated at $95\%$ confidence level.

The charged--particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants. Data for the 0 to 30 PCT most central events, and in ETARAP < 0.5 is available in previously published results [PLB726.610,PRC88.044910]. The uncertainties on $\left\langle N_{\text{part}}\right\rangle$ from the Glauber calculations not included (see [PRC88.044910]).

More…

Inclusive photon production at forward rapidities in proton-proton collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 146, 2015.
Inspire Record 1328669 DOI 10.17182/hepdata.69495

The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities ($2.3 < \eta < 3.9$) in proton-proton collisions at three center-of-mass energies, $\sqrt{s}=0.9$, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% $\pm$ 0.3% (stat) $\pm$ 8.8% (sys) and 61.2% $\pm$ 0.3% (stat) $\pm$ 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.

8 data tables

Photon multiplicity distribution for INEL proton-proton collisions at sqrt(s)=0.9 TeV.

Photon multiplicity distribution for INEL proton-proton collisions at sqrt(s)=2.76 TeV.

Photon multiplicity distribution for INEL proton-proton collisions at sqrt(s)=7 TeV.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

6 data tables

$N_\mathrm{part}$ for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the corresponding uncertainties derived from a Glauber calculation. The ${\langle N_\mathrm{part}^{\rm data} \rangle}$ are calculated from the NBD-Glauber fit to the VZERO amplitude, while the ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ are obtained by slicing the impact parameter distribution. ${\langle N_\mathrm{part}^{\rm data} \rangle}$ is also calculated for two variations of the AP, i.e. moving it to 91 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) and to 89 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) respectively. The last three columns report the discrepancies between ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ with the uncertainty of the AP.

Same as Table A.1 for $N_\mathrm{coll}$.

Same as Table A.1 for $T_\mathrm{AA}$.

More…

Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

The ALICE collaboration Aamodt, K ; Abelev, B ; Abrahantes Quintana, A ; et al.
Phys.Rev.Lett. 105 (2010) 252302, 2010.
Inspire Record 877822 DOI 10.17182/hepdata.62277

We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|$\eta$|<0.8) and transverse momentum range 0.2< $p_{\rm T}$< 5.0 GeV/$c$. The elliptic flow signal v$_2$, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 $\pm$ 0.002 (stat) $\pm$ 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v$_2(p_{\rm T})$ reaches a maximum of 0.2 near $p_{\rm T}$ = 3 GeV/$c$. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

5 data tables

Transverse momentum dependence of v2 for centrality 40-50% from the 2- and 4-particle cumulant methods.

Transverse momentum dependence of v2{4} for centralities 10-20%, 20-30% and 30-40%.

Centrality dependence of elliptic flow, integrated over the pT range 0.2 < pT < 5.0 GeV, estimated with two- and multi-particle correlation techniques.

More…

K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 72 (2005) 052001, 2005.
Inspire Record 681320 DOI 10.17182/hepdata.42774

We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.

36 data tables

K0S inclusive invariant PT distribution for HARD events at a centre of massenergy 1800 GeV.

K0S inclusive invariant PT distribution for MB events at a centre of mass energy 1800 GeV.

K0S inclusive invariant PT distribution for SOFT events at a centre of massenergy 1800 GeV.

More…

Version 2
Neutral strange particle production in deep inelastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 29-42, 1995.
Inspire Record 395196 DOI 10.17182/hepdata.44998

This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 67 (1995) 93-108, 1995.
Inspire Record 392386 DOI 10.17182/hepdata.45051

Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of $Q~2$ from 10 to $1280 {\rm\ GeV}~2$. The evolution with $Q$ of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \linebreak coherence effects in DIS and are compared with corresponding \eedata in order to test the universality of quark fragmentation.

16 data tables

Mean charged multiplicity in the current fragmentation region.

Mean charged multiplicity in the current fragmentation region.

Mean charged multiplicity in the current fragmentation region.

More…

Local particle densities and global multiplicities in central heavy ion interactions at 3.7-A/GeV, 14.6-A/GeV, 60-A/GeV and 200-A/GeV

The EMU01 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.C 56 (1992) 509-520, 1992.
Inspire Record 334794 DOI 10.17182/hepdata.9290

The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined.

4 data tables

No description provided.

NUCLEUS IS AGBR, CENTRAL EVENTS.

No description provided.

More…

Neutral strange particle production in 200-GeV/c p / pi+ / K+ interactions on Au, Ag, and Mg.

Brick, D.H. ; Widgoff, M. ; Beilliere, P. ; et al.
Phys.Rev.D 45 (1992) 734-742, 1992.
Inspire Record 339321 DOI 10.17182/hepdata.22671

We have used the Fermilab 30-in. bubble-chamber-hybrid spectrometer to study neutral-strange-particle production in the interactions of 200-GeV/c protons and π+ and K+ mesons with nuclei of gold, silver, and magnesium. Average multiplicities and inclusive cross sections for K0 and Λ are measured, and a power law is found to give a good description of their A dependence. The exponent characterizing the A dependence is consistent with being the same for K0 and Λ production, and also the same for proton and π+ beams. Average K0 and Λ multiplicities, as well as their ratio, have been measured as functions of the numbers of projectile collisions νp and secondary collisions νs in the nucleus, and indicate that rescattering contributes significantly to enhancement of Λ production but not to K0 production. The properties of events with multiple K0's or Λ's also corroborate this conclusion. K0 rapidities are in the central region and decrease gently with increasing νp, while Λ rapidities are in the target-fragmentation region and are independent of νp. K0 and Λ multiplicities increase with the rapidity loss of the projectile, but their rapidities do not.

8 data tables

No description provided.

No description provided.

No description provided.

More…