A Limit on muon-neutrino (anti-muon-neutrino) ---> tau-neutrino (anti-tau-neutrino) oscillations from a precision measurement of neutrino - nucleon neutral current interactions

McFarland, Kevin Scott ; Naples, D. ; Arroyo, C.G. ; et al.
Phys.Rev.Lett. 75 (1995) 3993-3996, 1995.
Inspire Record 396286 DOI 10.17182/hepdata.42343

We present a limit on $\nu_\mu(\overline{\nu}_\mu)\to\nu_\tau(\overline{\nu}_\tau)$ oscillations based on a study of inclusive $\nu N$ interactions performed using the CCFR massive coarse grained detector in the FNAL Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of $\nu_\mu N$ versus $\nu_\tau N$ charged current interactions. The $\nu_\mu$ energies ranged from $30$ to $500$GeV with a mean of $140$GeV. The minimum and maximum $\nu_\mu$ flight lengths are $0.9$km and $1.4$km respectively. The lowest $90\%$ confidence upper limit in $\sin~22\alpha$ of $2.7\times 10~{-3}$ is obtained at $\Delta m~2\sim50$eV$~2$. This result is the most stringent limit to date for $25<\Delta m~2<90$eV$~2$.

2 data tables

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUTAU oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.


Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Second generation leptoquark search in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3618-3623, 1995.
Inspire Record 397099 DOI 10.17182/hepdata.42373

We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron $p\overline{p}$ collider at $\sqrt{s}$ = 1.8 TeV. This search is based on 12.7 pb$~{-1}$ of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio $\beta$ or to neutrino and quark with branching ratio $(1-\beta)$. We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c$~{2}$ for $\beta = 1 $ and 89 GeV/c$~{2}$ for $\beta = 0.5 $ at the 95\%\ confidence level.

1 data table

The cross section times branching ratios.


Top quark search with the D\O\ 1992 - 1993 data sample

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 52 (1995) 4877-4919, 1995.
Inspire Record 398425 DOI 10.17182/hepdata.42468

We present results on the search for the top quark in pp¯ collisions at √s =1.8 TeV with an integrated luminosity of 13.5±1.6 pb−1. We have considered tt¯ production in the standard model using electron and muon dilepton decay channels (tt¯→eμ+jets, ee+jets, and μμ+jets) and single-lepton decay channels (tt¯→e+jets and μ+jets) with and without tagging of b quark jets. An analysis of these data optimized for top quark masses below 140 GeV/c2 gives a lower top quark mass limit of 128 GeV/c2. An analysis optimized for higher top quark masses yields 9 events with an expected background of 3.8±0.9. If we assume that the excess is due to tt¯ production, and assuming a top quark mass of 180 GeV/c2, we obtain a cross section of 8.2±5.1 pb.

1 data table

No description provided.


Measurement of the upsilon cross-section at D0 using dimuons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-95-206-E, 1995.
Inspire Record 397850 DOI 10.17182/hepdata.43051

None

1 data table

Cross section times the branching ratio for decay into dimuons.


Inclusive muon and B quark production cross-sections in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
(1995), 1995.
Inspire Record 398709 DOI 10.17182/hepdata.43027

We have calculated the double and triple differential cross sections for electron ejection with energy of 14.6 eV in single ionization of H2 by 75 keV proton impact. A molecular version of the continuum distorted wave-eikonal initial state approach is applied, where the interaction between the projectile and the residual molecular ion is considered more properly than in previous applications of the method. For triple differential cross sections, the present results are in better agreement with the experimental data than those of other descriptions when large momentum transfer values are considered. For double differential cross sections the experimental data are reproduced quite well for both coherent and incoherent proton beams.

2 data tables

No description provided.

No description provided.


Search for W boson pair production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-95-242-E, 1995.
Inspire Record 398747 DOI 10.17182/hepdata.43019

None

1 data table

Upper limit at the 95% C.L.


Measurement of the polarized forward - backward asymmetry of Z0 ---> b anti-b using a lifetime tag and momentum weighted track charge

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
SLAC-PUB-6979, 1995.
Inspire Record 398301 DOI 10.17182/hepdata.18618

None

1 data table

No description provided.


Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

2 data tables

No description provided.

The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').


Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.