Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.
No description provided.
Axis error includes +- 2.3/2.3 contribution.
Axis error includes +- 2.3/2.3 contribution.
The Krakow-Louisiana-Minnesota-Moscow Collaboration (KLMM) has exposed a set of emulsion chambers with lead targets to a 158 GeV/c per nucleon beam of Pb208 nuclei, and we report the initial analysis of 40 high-multiplicity Pb-Pb collisions. To test the validity of the superposition model of nucleus-nucleus interactions in this new regime, we compare the shapes of the pseudorapidity distributions with FRITIOF Monte Carlo model calculations, and find close agreement for even the most central events. We characterize head-on collisions as having a mean multiplicity of 1550±120 and a peak pseudorapidity density of 390±30. These estimates are significantly lower than our FRITIOF calculations. © 1996 The American Physical Society.
No description provided.
No description provided.
The analyzing power Ay for π+p→ scattering at 68.3 MeV has been measured at the Paul Scherrer Institut with the magnetic spectrometer LEPS. The measurements cover the angular range 40°≤θlab≤70°. The protons have been polarized in a butanol target, operated in frozen spin mode. The S31 phase shift comes out by about 1° smaller than the Koch-Pietarinen [Nucl. Phys. A 336, 331 (1980)] phase shift analysis, supporting the necessity of an alternative dispersion analysis of πN scattering to determine the σ term and the πN coupling constant. © 1996 The American Physical Society.
The two data sets correspond to measurements with two different target compositions (see text).
Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).
No description provided.
Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Here UNSPEC is invisible particle.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
Cross sections for J ψ,ψ′ and Drell-Yan production in Pb+Pb collisions at 158×A GeV/c are presented and compared with results obtained by the NA38 and NA51 collaborations. The Pb+Pb data have been collected by the NA50 collaboration using the NA38 dimuon spectrometer. The Drell-Yan mechanism is found to scale as (A projectile · B target ) in p+B target and A projectile + B target collisions including Pb+Pb collisions. Regarding J ψ , an anomalous suppression is observed in Pb+Pb collisions with respect to the suppression observed in p+B target , O+B target and S+U collisions. The cross section ratios ψ′ ( J ψ ) are similar in Pb+Pb and S+U collisions.
No description provided.
No description provided.
The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.
No description provided.
We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.
No description provided.
No description provided.
Integrated b-quark production cross section.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T fo and mean collective flow velocity 〈β〉 are extracted. Preliminary results of the particle ratios of K − K + and p p are discussed in the context of cascade models of RQMD and VENUS.
CENTRAL COLLISIONS: SIG(TRIG)/SIG(GEOM)=10%.