Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 514, 2022.
Inspire Record 2026265 DOI 10.17182/hepdata.130653

The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $\sqrt{s} = 13\ \mathrm{TeV}$ is studied for the first time. Jets are reconstructed from charged particles using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R$ varying from $0.2$ to $0.7$. The jets are measured in the pseudorapidity range $|\eta_{\rm jet}|< 0.9-R$ and in the transverse momentum range $5<p_\mathrm{T,jet}^{\rm ch}<140\ \mathrm{GeV}/c$. The multiplicity intervals are categorised by the ALICE forward detector V0. The $p_{\mathrm{T}}$ differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $20\ \mathrm{GeV}/c$. The cross section ratios for different $R$ are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.

9 data tables

Inclusive charged-particle jet cross sections in pp collisions at $\sqrt{s}$ = 13 TeV using the anti-kT algorithm for different jet resolution parameters R from 0.2 to 0.7, with UE subtraction. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as solid boxes around the data points.

Ratio of charged-particle jet cross section for resolution parameter R = 0.2 to other radii R = X, with X ranging from 0.3 to 0.7, after UE subtraction. Data are compared with LO (PYTHIA) and NLO (POWHEG+PYTHIA8) predictions as shown in the bottom panels. The systematic uncertainties of the cross section ratios from data are indicated by solid boxes around data points in the upper panel and shaded bands around unity in the mid and lower panels. No uncertainties are shown for theoretical predictions for better visibility.

Charged-particle jet yields in different V0M multiplicity percentile intervals for resolution parameters R varied from 0.2 to 0.7 in pp collisions at s = 13 TeV. Statistical and total systematic uncertainties are shown as vertical error bars and boxes around the data points, respectively.

More…