Search for new particles in an extended Higgs sector with four b quarks in the final state at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 835 (2022) 137566, 2022.
Inspire Record 2040549 DOI 10.17182/hepdata.127245

A search for an extended Higgs sector, characterized by a massive resonance X decaying to a pair of spin-0 bosons $\phi$ that themselves decay to pairs of bottom quarks, is presented. The analysis is restricted to the mass ranges $m_\phi$ from 25 to 100 GeV and $m_\mathrm{X}$ from 1 to 3 TeV. For these mass ranges, the decay products of each $\phi$ boson are expected to merge into a single large-radius jet. Jet substructure and flavor identification techniques are used to identify these jets. The search is based on CERN LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV, collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Model-specific limits are set on the product of the production cross section and branching fraction for X $\to$$\phi\phi$$\to$$(\mathrm{b\bar{b}})(\mathrm{b\bar{b}})$ as a function of mass, where both the X $\to$$\phi\phi$ and $\phi$$\to$$\mathrm{b\bar{b}}$ branching fractions are assumed to be 100%. These limits are the first of their kind on this process, ranging between 30 and 1 fb at 95% confidence level for the considered mass ranges.

17 data tables

The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 25 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.

The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 30 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.

The observed 95% CL upper limits on the product of the cross section, and branching fraction for the production of X$\to\phi\phi\to$4b, with $m_\phi$ = 35 GeV. The corresponding expected limits and their variations at the 1 and 2 standard deviation levels are also shown. Limits are compared to various extended higgs sector model cross sections as a function of the parameter $m_XN/f$.

More…

Search for a W' boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2022) 088, 2022.
Inspire Record 2039384 DOI 10.17182/hepdata.127138

A search is presented for a heavy W' boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W' boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W' boson cross section and the final state branching fraction. A W' boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.

9 data tables

Reconstructed W′ boson mass distributions in the tHb signal region.

Reconstructed W′ boson mass distributions in the tZb signal region.

The W' boson 95% CL limits on the product of cross section and branching fraction. The expected and observed limits are shown for the center VLQ mass range.

More…

Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 2022 (2022) 063, 2022.
Inspire Record 2038801 DOI 10.17182/hepdata.114012

A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-­Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170\GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.599 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z' in the sequential standard model, a lower mass limit of 4.4 TeV is set at 95% confidence level.

5 data tables

Results for the measurement of $A_\mathrm{FB}$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as an inclusive measurement across all mass bins.

Results for the measurement of $A_0$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as inclusive measurement across all mass bins. To help in the interpretation of these results, we also list the average dilepton $p_{T}$ of the data events in each mass bin.

Results for the measurement of $\Delta A_\mathrm{FB}$ and $\Delta A_0$ between the muon and electron channels from the maximum likelihood fit to data in different mass bins as well as an inclusive measurement across all mass bins.

More…

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

31 data tables

Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

More…

Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 081802, 2022.
Inspire Record 2035644 DOI 10.17182/hepdata.114358

A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of 138 fb$^{-1}$. No deviation from the background-only hypothesis is observed. A 95% confidence level upper limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-coupling, $\kappa_\lambda$, and of the coupling of two Higgs bosons to two vector bosons, $\kappa_\mathrm{2V}$. The observed (expected) allowed intervals at the 95% confidence level are $-$2.3 $\lt$ $\kappa_\lambda$ $\lt$ 9.4 ($-$5.0 $\lt$ $\kappa_\lambda$ $\lt$ 12.0) and $-$0.1 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.2 ($-$0.4 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.5). These are the most stringent observed constraints to date on the HH production cross section and on the $\kappa_\mathrm{2V}$ coupling.

2 data tables

Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{\lambda}$ modifier

Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{2V}$ modifier


Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 112007, 2022.
Inspire Record 2034279 DOI 10.17182/hepdata.110691

An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.

288 data tables

The minimum lepton $\mathrm{p_{T}}$ (GeV) distribution in 3L MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

The $\mathrm{S_{T}}$ (GeV) distribution in 3L WZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

The $\mathrm{DR_{min}}$ distribution in 3L Z$\mathrm{\gamma}$ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

More…

Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature Phys. 18 (2022) 1329-1334, 2022.
Inspire Record 2032090 DOI 10.17182/hepdata.127288

Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width - related to its lifetime - is an important parameter. One way to determine this quantity is by measuring its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here, we report evidence for such off-shell contributions to the production cross section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell contribution is excluded at a $p$-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $\Gamma_{\mathrm{H}}$ = 3.2 $_{-1.7}^{+2.4}$ MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.

47 data tables

GGsm vs -2dNLL (SM-like (f_{ai}=0) observed)

GGsm vs -2dNLL (f_{a2} (u) observed)

GGsm vs -2dNLL (f_{a3} (u) observed)

More…

Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2032073 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W' bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W' boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak $W$ parameter, are presented using LHC data for the first time. These results together with those from the direct W' resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

26 data tables

Product of signal selection efficiency and acceptance as a function of resonance mass for a SSM WPRIME decaying to electron or muon plus neutrino.It is calculated as the number of WPRIME signal events passing the selection process over the number of generated events. In the selection process there is no requirement on a minimum $M_T$ applied. The SSM WPRIME signal samples have been generated with PYTHIA 8.2. More details in paper

Observed and expected number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for selected values of $M_T$ thresholds. The statistical and systematic uncertainties are added in quadrature providing the total uncertainty.

Observed and expected-from-SM number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for two steps in the selection procedure: 1) one high-quality high-$p_T$ lepton with $p_T$ > 240(53) GeV for E(MU), and no other lepton in the event, with $M_T$ > 400(120) GeV for events with E(MU). 2) additionally the ratio of the lepton $p_T$ and $p_T^{miss}$ must be 0.4 < $p_T$/$p_T^{miss}$ < 1.5 and the azimuthal angular difference between them, ${\Delta\phi}$> 2.5. The signal yield for an SSM WPRIME of mass 5.6 TeV is also included.

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 514, 2022.
Inspire Record 2026265 DOI 10.17182/hepdata.130653

The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $\sqrt{s} = 13\ \mathrm{TeV}$ is studied for the first time. Jets are reconstructed from charged particles using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R$ varying from $0.2$ to $0.7$. The jets are measured in the pseudorapidity range $|\eta_{\rm jet}|< 0.9-R$ and in the transverse momentum range $5<p_\mathrm{T,jet}^{\rm ch}<140\ \mathrm{GeV}/c$. The multiplicity intervals are categorised by the ALICE forward detector V0. The $p_{\mathrm{T}}$ differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $20\ \mathrm{GeV}/c$. The cross section ratios for different $R$ are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.

9 data tables

Inclusive charged-particle jet cross sections in pp collisions at $\sqrt{s}$ = 13 TeV using the anti-kT algorithm for different jet resolution parameters R from 0.2 to 0.7, with UE subtraction. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as solid boxes around the data points.

Ratio of charged-particle jet cross section for resolution parameter R = 0.2 to other radii R = X, with X ranging from 0.3 to 0.7, after UE subtraction. Data are compared with LO (PYTHIA) and NLO (POWHEG+PYTHIA8) predictions as shown in the bottom panels. The systematic uncertainties of the cross section ratios from data are indicated by solid boxes around data points in the upper panel and shaded bands around unity in the mid and lower panels. No uncertainties are shown for theoretical predictions for better visibility.

Charged-particle jet yields in different V0M multiplicity percentile intervals for resolution parameters R varied from 0.2 to 0.7 in pp collisions at s = 13 TeV. Statistical and total systematic uncertainties are shown as vertical error bars and boxes around the data points, respectively.

More…