Showing 10 of 5542 results
Modifications to the distribution of charged particles with respect to high transverse momentum ($p_\mathrm{T}$) jets passing through a quark-gluon plasma are explored using the CMS detector. Back-to-back dijets are analyzed in lead-lead and proton-proton collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV via correlations of charged particles in bins of relative pseudorapidity and angular distance from the leading and subleading jet axes. In comparing the lead-lead and proton-proton collision results, modifications to the charged-particle relative distance distribution and to the momentum distributions around the jet axis are found to depend on the dijet momentum balance $x_j$, which is the ratio between the subleading and leading jet $p_\mathrm{T}$. For events with $x_j$$\approx$ 1, these modifications are observed for both the leading and subleading jets. However, while subleading jets show significant modifications for events with a larger dijet momentum imbalance, much smaller modifications are found for the leading jets in these events.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the subleading jets as a function of $\Delta\eta$ in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV. The PbPb results are shown for different centrality regions.
The leading jet radial momentum profiles in pp and PbPb collisions and a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV. The PbPb results are shown for different centrality regions.
The subleading jet radial momentum profiles in pp and PbPb collisions as a function of $\Delta r$ for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV. The PbPb results are shown for different centrality regions.
The ratio between leading jet radial momentum profiles in PbPb and pp collisions as a function of $\Delta r$.
The ratio between subleading jet radial momentum profiles in PbPb and pp collisions as a function of $\Delta r$.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for leading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for leading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for leading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for leading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for leading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Ratios of leading jet shapes between PbPb and pp collisions. The results from 0-10 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of leading jet shapes between PbPb and pp collisions. The results from 10-30 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of leading jet shapes between PbPb and pp collisions. The results from 30-50 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of leading jet shapes between PbPb and pp collisions. The results from 50-90 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $0.7 < p_{\mathrm{T}}^{\mathrm{ch}} < 1$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $1 < p_{\mathrm{T}}^{\mathrm{ch}} < 2$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $2 < p_{\mathrm{T}}^{\mathrm{ch}} < 3$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $3 < p_{\mathrm{T}}^{\mathrm{ch}} < 4$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $4 < p_{\mathrm{T}}^{\mathrm{ch}} < 8$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $8 < p_{\mathrm{T}}^{\mathrm{ch}} < 12$ GeV.
Jet shapes for subleading jets in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for subleading jets in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for subleading jets in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for subleading jets in the 50-90 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Jet shapes for subleading jets in pp collisions. The results are shown in different dijet momentum balance bins for the charged particle $p_{\mathrm{T}}$ bin $12 < p_{\mathrm{T}}^{\mathrm{ch}} < 300$ GeV.
Ratios of subleading jet shapes between PbPb and pp collisions. The results from 0-10 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of subleading jet shapes between PbPb and pp collisions. The results from 10-30 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of subleading jet shapes between PbPb and pp collisions. The results from 30-50 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratios of subleading jet shapes between PbPb and pp collisions. The results from 50-90 % centrality bin in PbPb are compared to pp using several dijet momentum balance selections.
Ratio between unbalanced selection of leading jet shapes to all leading jet shapes in pp and PbPb collisions. The PbPb results are shown for different centrality regions.
Ratio between balanced selection of leading jet shapes to all leading jet shapes in pp and PbPb collisions. The PbPb results are shown for different centrality regions.
Ratio between unbalanced selection of subleading jet shapes to all subleading jet shapes in pp and PbPb collisions. The PbPb results are shown for different centrality regions.
Ratio between balanced selection of subleading jet shapes to all subleading jet shapes in pp and PbPb collisions. The PbPb results are shown for different centrality regions.
Generator-level vs. reconstructed $x_{j}$ values in the analysis $x_{j}$ bins. The plots show the probability to find a generator level $x_{j}$ for a given reconstructed $x_{j}$.
Generator-level vs. reconstructed $x_{j}$ values in the analysis $x_{j}$ bins. The plots show the probability to find a reconstructed $x_{j}$ for a given generator level $x_{j}$.
The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 5-10%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 5-10%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 5-10%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-20%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-20%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-20%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 20-30%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 20-30%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 20-30%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-40%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-40%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-40%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 40-50%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 40-50%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 40-50%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-60%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-60%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-60%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of phi ($\phi$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-10%.
$p_{T}$-distributions of phi ($\phi$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-30%.
$p_{T}$-distributions of phi ($\phi$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-50%.
$p_{T}$-distributions of phi ($\phi$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-70%.
$p_{T}$-distributions of phi ($\phi$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 5-10%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 5-10%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-20%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-20%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 20-30%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 20-30%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-40%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-40%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 40-50%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 40-50%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-60%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-60%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of protons ($p+pbar$)/pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
$p_{T}$-distributions of phi ($\phi$)/protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-10%.
$p_{T}$-distributions of phi ($\phi$)/protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 10-30%.
$p_{T}$-distributions of phi ($\phi$)/protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 30-50%.
$p_{T}$-distributions of phi ($\phi$)/protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 50-70%.
$p_{T}$-distributions of phi ($\phi$)/protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 70-90%.
Integrated yield ratios of kaons ($K^{+}+K^{-}$) to pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV.
Integrated yield ratios of protons ($p+pbar$) to pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV.
Integrated yield ratios of phi ($\phi$) to pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Global polarization of $\Xi$ and $\Omega$ hyperons has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The measurements of the $\Xi^-$ and $\bar{\Xi}^+$ hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay $\Xi\rightarrow\Lambda+\pi$, as well as by measuring the polarization of the daughter $\Lambda$-hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over $\Xi^-$ and $\bar{\Xi}^+$, is measured to be $\langle P_\Xi \rangle = 0.47\pm0.10~({\rm stat.})\pm0.23~({\rm syst.})\,\%$ for the collision centrality 20%-80%. The $\langle P_\Xi \rangle$ is found to be slightly larger than the inclusive $\Lambda$ polarization and in reasonable agreement with a multi-phase transport model (AMPT). The $\langle P_\Xi \rangle$ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of $\Omega$, $\langle P_\Omega \rangle = 1.11\pm0.87~({\rm stat.})\pm1.97~({\rm syst.})\,\%$ was obtained by measuring the polarization of daughter $\Lambda$ in the decay $\Omega \rightarrow \Lambda + K$, assuming the polarization transfer factor $C_{\Omega\Lambda}=1$.
$\Xi$ and $\Omega$ global polarization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.
The energy dependence of $\Lambda$ and $\bar{\Lambda}$ global polarization. Note that the results from previous measurements are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732 and $\alpha_{\bar{\Lambda}}$=-0.758. The original data can be found in <a href="https://www.hepdata.net/record/ins1510474">this page</a>.
Centrality dependence of $\Xi$ global poalrization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.
Centrality dependence of $\Lambda$ global polarization in Au+Au collisions at 200 GeV. Note that the results from previous measurement are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732. The original data can be found in <a href="https://www.hepdata.net/record/ins1672785">this page</a>.
A search for leptoquarks produced singly and in pairs in proton-proton collisions is presented. We consider the leptoquark (LQ) to be a scalar particle of charge -1/3$e$ coupling to a top quark plus a tau lepton ($\mathrm{t}\tau$) or a bottom quark plus a neutrino ($\mathrm{b}\nu$), or a vector particle of charge +2/3$e$, coupling to $\mathrm{t}\nu$ or $\mathrm{b}\tau$. These choices are motivated by models that can explain a series of anomalies observed in the measurement of B meson decays. In this analysis the signatures $\mathrm{t}\tau\nu\mathrm{b}$ and $\mathrm{t}\tau\nu$ are probed, using data recorded by the CMS experiment at the CERN LHC at $\sqrt{s} =$ 13 TeV and that correspond to an integrated luminosity of 137 fb$^{-1}$. These signatures have not been previously explored in a dedicated search. The data are found to be in agreement with the standard model prediction. Lower limits at 95% confidence level are set on the LQ mass in the range 0.98-1.73 TeV, depending on the LQ spin and its coupling $\lambda$ to a lepton and a quark, and assuming equal branching fractions for the two LQ decay modes considered. These are the most stringent constraints to date on the existence of leptoquarks in this scenario.
Pair leptoquark (LQ) total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.
Single scalar leptoquark (LQs) total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.
Single vector leptoquark (LQv) k = 0 total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.
Single vector leptoquark (LQv) k = 1 total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.
In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.
Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding
Forward neutron single spin asymmetries as a function of PT
We present a measurement of the transverse single-spin asymmetry for $\pi^0$ and $\eta$ mesons in $p^\uparrow$ $+$ $p$ collisions in the pseudorapidity range $|\eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $\pi^0$ and $\eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.
Data from Figs. 2, 4, and 5 of the transverse single-spin asymmetry of neutral pions measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $1.06\times10^{-4}$ from bunch shuffling.
Data from Figs. 3 and 4 of the transverse single-spin asymmetry of eta mesons measured at $|\eta|<0.35$ in $p^\uparrow$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. An additional scale uncertainty of 3.4\% due to the polarization uncertainty is not shown. The total $\sigma_{\rm syst}$ in the lowest $p_T$ bin includes an additional systematic uncertainty of $6.20\times10^{-4}$ from bunch shuffling.
Exclusive dimuon production in ultraperipheral collisions (UPC), resulting from photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei, $\mathrm{PbPb}(\gamma\gamma) \rightarrow \mu^+\mu^- (\mathrm{Pb}^{(\star)}\mathrm{Pb}^{(\star)} )$, is studied using $\mathcal{L}_{\mathrm{int}} = 0.48$ nb$^{-1}$ of $\sqrt{s_\mathrm{NN}}=5.02$ TeV lead-lead collision data at the LHC with the ATLAS detector. Dimuon pairs are measured in the fiducial region $p_{\mathrm{T}\mu} > 4$ GeV, $|\eta_{\mu}| < 2.4$, invariant mass $m_{\mu\mu} > 10$ GeV, and $p_{\mathrm{T,\mu\mu}} < 2$ GeV. The primary background from single-dissociative processes is extracted from the data using a template fitting technique. Differential cross sections are presented as a function of $m_{\mu\mu}$, absolute pair rapidity ($|y_{\mu\mu}|$), scattering angle in the dimuon rest frame ($|\cos \vartheta^{\star}_{\mu\mu}|$) and the colliding photon energies. The total cross section of the UPC $\gamma \gamma \rightarrow \mu^{+}\mu^{-}$ process in the fiducial volume is measured to be $\sigma_{\mathrm{fid}}^{\mu\mu} = 34.1 \! \pm \! 0.3 \mathrm{(stat.)} \! \pm \! 0.7 \mathrm{(syst.)}$ $\mu\mathrm{b}$. Generally good agreement is found with calculations from STARlight, which incorporate the leading-order Breit-Wheeler process with no final-state effects, albeit differences between the measurements and theoretical expectations are observed. In particular, the measured cross sections at larger $|y_{\mu\mu}|$ are found to be about 10-20% larger in data than in the calculations, suggesting the presence of larger fluxes of photons in the initial state. Modification of the dimuon cross sections in the presence of forward and/or backward neutron production is also studied and is found to be associated with a harder incoming photon spectrum, consistent with expectations.
Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.
Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.
Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|y_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|y_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight 2.0 shown as a function of $|y_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.
Differential UPC dimuon cross sections shown as a function of $|m_{\mu\mu}|$ in the interval $0 < |y_{\mu\mu}| < 0.8$.
Differential UPC dimuon cross sections shown as a function of $|m_{\mu\mu}|$ in the interval $0.8 < |y_{\mu\mu}| < 1.6$.
Differential UPC dimuon cross sections shown as a function of $|m_{\mu\mu}|$ in the interval $1.6 < |y_{\mu\mu}| < 2.4$.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|m_{\mu\mu}|$ in the interval $0 < |y_{\mu\mu}| < 0.8$.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|m_{\mu\mu}|$ in the interval $0.8 < |y_{\mu\mu}| < 1.6$.
Ratio of differential UPC dimuon cross sections from data and STARlight 2.0 shown as a function of $|m_{\mu\mu}|$ in the interval $1.6 < |y_{\mu\mu}| < 2.4$.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.
Ratio of differential UPC dimuon cross sections from data and STARlight 2.0 shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV and $|y_{\mu\mu}|<0.8$.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV and $|y_{\mu\mu}|<0.8$.
Differential UPC dimuon cross sections shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV and $|y_{\mu\mu}|<0.8$.
Ratio of differential UPC dimuon cross sections from data and STARlight shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV and $|y_{\mu\mu}|<0.8$.
Ratio of differential UPC dimuon xsects from data and STARlight shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV and $|y_{\mu\mu}|<0.8$.
Ratio of differential UPC dimuon cross sections from data and STARlight 2.0 shown as a function of $|\cos\theta^{\star}_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV and $|y_{\mu\mu}|<0.8$.
Differential cross section as a function of k_max
Ratio of data/STARlight for differential cross sections as a function of k_max
Differential cross section as a function of k_min
Ratio of data/STARlight for differential cross sections as a function of k_min
Differential cross sections in $\alpha$ (acoplanarity) integrated over the full fiducial volume
Fraction of Xn0n events as a function of $m_{\mu\mu}$ for $0<|y_{\mu\mu}|<0.8$
Fraction of Xn0n events as a function of $y_{\mu\mu}$ for $10<|m_{\mu\mu}|<20$ GeV
Fraction of Xn0n events as a function of $m_{\mu\mu}$ for $0.8<|y_{\mu\mu}|<1.6$
Fraction of Xn0n events as a function of $y_{\mu\mu}$ for $20<|m_{\mu\mu}|<40$ GeV
Fraction of Xn0n events as a function of $m_{\mu\mu}$ for $1.6<|y_{\mu\mu}|<2.4$
Fraction of Xn0n events as a function of $y_{\mu\mu}$ for $40<|m_{\mu\mu}|<80$ GeV
Fraction of XnXn events as a function of $m_{\mu\mu}$ for $0<|y_{\mu\mu}|<0.8$
Fraction of XnXn events as a function of $y_{\mu\mu}$ for $10<|m_{\mu\mu}|<20$ GeV
Fraction of XnXn events as a function of $m_{\mu\mu}$ for $0.8<|y_{\mu\mu}|<1.6$
Fraction of XnXn events as a function of $y_{\mu\mu}$ for $20<|m_{\mu\mu}|<40$ GeV
Fraction of XnXn events as a function of $m_{\mu\mu}$ for $1.6<|y_{\mu\mu}|<2.4$
Fraction of XnXn events as a function of $y_{\mu\mu}$ for $40<|m_{\mu\mu}|<80$ GeV
A search is performed for the electroweak pair production of charginos and associated production of a chargino and neutralino, each of which decays through an $R$-parity-violating coupling into a lepton and a $W$, $Z$, or Higgs boson. The trilepton invariant-mass spectrum is constructed from events with three or more leptons, targeting chargino decays that include an electron or muon and a leptonically decaying $Z$ boson. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV and collected by the ATLAS experiment between 2015 and 2018. The data are found to be consistent with predictions from the Standard Model. The results are interpreted as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model. Limits are also set on the production of charginos and neutralinos for a Minimal Supersymmetric Standard Model with an approximate $B$-$L$ symmetry. Charginos and neutralinos with masses between 100 GeV and 1100 GeV are excluded depending on the assumed decay branching fractions into a lepton (electron, muon, or $\tau$-lepton) plus a boson ($W$, $Z$, or Higgs).
This is the HEPData space for the trilepton resonance wino search, the full resolution figures can be found here https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-36/. The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' buttun above where they can then be found in the 'Common Resources' area. A detailed README for how to use the likelihoods is also included in this download. <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Obs.%20data%20vs%20SM%20bkg.%20exp.%20in%20CRs%20and%20VRs">Obs. data vs SM bkg. exp. in CRs and VRs</a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0%20">$\ell=(e, \mu, \tau)$, Obs_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up%20">$\ell=(e, \mu, \tau)$, Obs_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down%20">$\ell=(e, \mu, \tau)$, Obs_0_Down </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0%20">$\ell=(e, \mu, \tau)$, Exp_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up%20">$\ell=(e, \mu, \tau)$, Exp_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down%20">$\ell=(e, \mu, \tau)$, Exp_0_Down </a> <li><a href="?table=$\ell=e$,%20Obs_0%20">$\ell=e$, Obs_0 </a> <li><a href="?table=$\ell=e$,%20Obs_0_Up%20">$\ell=e$, Obs_0_Up </a> <li><a href="?table=$\ell=e$,%20Obs_0_Down%20">$\ell=e$, Obs_0_Down </a> <li><a href="?table=$\ell=e$,%20Exp_0%20">$\ell=e$, Exp_0 </a> <li><a href="?table=$\ell=e$,%20Exp_0_Up%20">$\ell=e$, Exp_0_Up </a> <li><a href="?table=$\ell=e$,%20Exp_0_Down%20">$\ell=e$, Exp_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Obs_0%20">$\ell=\mu$, Obs_0 </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Up%20">$\ell=\mu$, Obs_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Down%20">$\ell=\mu$, Obs_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Exp_0%20">$\ell=\mu$, Exp_0 </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Up%20">$\ell=\mu$, Exp_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Down%20">$\ell=\mu$, Exp_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Obs_0%20">$\ell=\tau$, Obs_0 </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Up%20">$\ell=\tau$, Obs_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Down%20">$\ell=\tau$, Obs_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Exp_0%20">$\ell=\tau$, Exp_0 </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Up%20">$\ell=\tau$, Exp_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Down%20">$\ell=\tau$, Exp_0_Down </a> </ul> <b>Triangle Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 600 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 600 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 800 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 800 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 900 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 900 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 600 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 600 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 800 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 800 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 900 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 900 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 200 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 200 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 200 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 200 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 300 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 300 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 300 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 300 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 400 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 400 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 400 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 400 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 500 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 500 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 500 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 500 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20upperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20expectedUpperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20upperLimit_XS_gr%20">$\ell=e$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20expectedUpperLimit_XS_gr%20">$\ell=e$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20upperLimit_XS_gr%20">$\ell=\mu$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20expectedUpperLimit_XS_gr%20">$\ell=\mu$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20upperLimit_XS_gr%20">$\ell=\tau$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20expectedUpperLimit_XS_gr%20">$\ell=\tau$, expectedUpperLimit_XS_gr </a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SRFR%20">Variable bin $m_{Z\ell}$ for SRFR </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR4$\ell$%20">Variable bin $m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR3$\ell$%20">Variable bin $m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$E^{miss}_{T}$%20">N-1 for SR3$\ell$, $E^{miss}_{T}$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$m^{min}_{T}$%20">N-1 for SR3$\ell$, $m^{min}_{T}$ </a> <li><a href="?table=N-1%20for%20SR4$\ell$,%20$E^{miss,SF}_{T}$%20">N-1 for SR4$\ell$, $E^{miss,SF}_{T}$ </a> <li><a href="?table=N-1%20for%20SRFR,%20$m^{asym}_{Z\ell}$%20">N-1 for SRFR, $m^{asym}_{Z\ell}$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SRFR%20">$m_{Z\ell}$ for SRFR </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR4$\ell$%20">$m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR3$\ell$%20">$m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=$L_{T}$%20for%20SR4$\ell$%20">$L_{T}$ for SR4$\ell$ </a> </ul> <b>Cut flows:</b> <ul display="inline-block"> <li><a href="?table=Yields%20Table">Yields Table</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SRFR">Model-Independent Results Table, SRFR</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR4$\ell$">Model-Independent Results Table, SR4$\ell$</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR3$\ell$">Model-Independent Results Table, SR3$\ell$</a> <li><a href="?table=Cutflow%20Table">Cutflow Table</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Acceptance in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Acceptance in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Acceptance in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Efficiency in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Efficiency in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Efficiency in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SRFR">Acceptance by Final State in SRFR</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR4$\ell$">Acceptance by Final State in SR4$\ell$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR3$\ell$">Acceptance by Final State in SR3$\ell$</a> </ul>
The observed data and the SM background expectation in the CRs (pre-fit) and VRs (post-fit). The ''Other'' category mostly consists of tW Z, ttW, and tZ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the fractional difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, computed following the profile likelihood method described in Ref. [arXiv: physics/0702156].
The observed yields and post-fit background expectations in SRFR, SR4$\ell$, and SR3$\ell$, shown inclusively and when the direct lepton from a $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ decay is required to be an electron or muon. The Other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. Uncertainties on the background expectation include combined statistical and systematic uncertainties. The individual uncertainties may be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
$E^{miss}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{min}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$E^{miss,SF}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{asym}_{Z\ell}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and pre-fit SM background expectation as a function of $L_{T}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. Only statistical uncertainties on the data and background expecation are shown.The bottom panel shows the ratio between the data and the background prediction
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Summary of event selections for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 200, 500, and 800 GeV, shown separately for the $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1}$ and $\tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ processes. The yields are normalized to a luminosity of $139 fb^{-1}$, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied at the end. After the initial selections, the yields are separated into SRFR, SR4$\ell$, and SR3$\ell$ regions, and then further separated into the $e$ and $\mu$ channels. Democratic branching fractions into bosons (W, Z, and Higgs) and leptons ($e$, $\mu$, and $\tau$ are used, with no branching fraction reweighting performed. The generator filters are discussed in detail in Section 3. The computing preselection requires at least two electrons or muons of uncalibrated pT > 9 GeV and |$\eta$| < 2.6.
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SRFR region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tj1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tj1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tj1L analysis considering only the DMt signal.
Upper limits on upper limits on excluded cross sections of the tj1L analysis considering only the DMt signal.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.3$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.5$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Background-only fit results for the tW1L and tW2L signal regions. The backgrounds which contribute only a small amount (rare processes such as triboson, Higgs boson production processes, $t\bar{t}t\bar{t}$, $t\bar{t}WW$ and non-prompt or misidentified leptons background) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the tj1L signal regions. The backgrounds which contribute only a small amount ($Z$+jets, rare processes such as $tWZ$, triboson, Higgs boson production processes, ,$t\bar{t}t\bar{t}$, $t\bar{t}WW$) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in all bins of the tW1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in the tW2L channel. The PreSelection includes at least 2 leptons in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 40~GeV$, $m_{ll} > 40~GeV$, $m\mathrm{_{T2}} > 40~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with the statistical uncertainties (except for the first cuts) for two DMt samples in all bins off the tj1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.