Nuclear medium effects on B$^+$ meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, corresponding to an integrated luminosity of 175 nb$^{-1}$, were used. The scaling factors in the ratio are determined using a novel approach based on the Z $\to$$\mu^+\mu^-$ cross sections measured in the same events. The scaled ratio for B$^+$ is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor.
$\mathrm{B}^+$ differential cross section and FONLL calculations, scaled by the number of binary collisions, vs $p_{\mathrm{T}}$. Global uncertainty (not included in the plot) is 4.7%, which comprises of the uncertainties in the integrated luminosity measurement and the $\mathrm{B}^+$ meson branching fraction.
$\mathrm{B}^+$ differential cross section in $p_{\mathrm{T}}$ bins divided into classes of multiplicity. For better visibility, data points are scaled by a factor of 2 (blue), 4 (magenta), or 8 (red). Vertical bars represent total uncertainties.
The $R_{\mathrm{HL}}$ for $\mathrm{B}^+$ in $p_{\mathrm{T}}$ bins for the highest and lowest multiplicity classes. The error bars correspond to the statistical uncertainty, and the boxes represent the sum in quadrature of systematic uncertainties.
Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.
The $N_{tracks}$ distribution for the $0-10\%$ centrality class (data points) compared to the $N_{mix}$ distribution from the mixed event sample (curve).
The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.
The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.