Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.
We report a high-statistics measurement of the branching fraction for tau^- -> pi^- pi^0 nu_tau and the invariant mass spectrum of the produced pi^- pi^0 system using 72.2 fb^-1 of data recorded with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider. The branching fraction obtained is (25.12 +/- 0.01 +/- 0.38)%, where the first error is statistical and the second is systematic. The unfolded pi^- pi^0 mass spectrum is used to determine resonance parameters for the rho(770), rho'(1450), and rho''(1700) mesons. We also use this spectrum to estimate the hadronic (2pi) contribution to the anomalous magnetic moment of the muon (a_{mu}^{pipi}). Our result for a_{mu}^{pipi} integrated over the mass range sqrt{s} = 2m_{pi} - 1.8 GeV/c^2 is a_{mu}^{pipi} = (519.1 +/- 1.5 (exp) +/- 2.6 (Br) +/- 2.5 (isospin)) x 10^{-10}, where the first error is due to the experimental uncertainties, the second is due to the uncertainties in the branching fractions and the third is due to the uncertainties in the isospin-violating corrections.
Fully corrected $s= M^2_{\pi\pi^{2}}$ distribution, 1/N dn/ds, for $\tau^{-}\to \pi^{-}\pi^0 \nu_{\tau}$, from threshold to the kinematical limit s=3.15 GeV$^2$. The error bars include uncertainties both from statistical and systematic contributions.
Statistic covariance matrix for the 1/N dn/ds distribution in the $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ decay. A special treatment is needed to take an inverse of this matrix. Please contact me (Hisaki Hayashii) if it is needed.
Systematic covariance matrix for the 1/N dn/ds sidtribution in the $\tau^- \to \pi^- \pi^0 \nu_{\tau}$ decay.
The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic $ep$ scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb$^{-1}$. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in $\epem$ collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions.
Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 1.5 to 4.
Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 4 to 8.
Multiplicity distributions measured in the current region of the Breit frame for the bin of 2*E(Breit,current region) = 8 to 12.
The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.
Total cross section for the lower Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.
Total cross section for the higher Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.
Lower Q**2 extracted differential cross section at W = 1.500 GeV and cos(theta(eta) = -0.917, -0.750 and -0.583.
Quasi-free photoproduction of eta-mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta-mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasi-free n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta-production off the neutron shows a pronounced bump-like structure at W=1.68 GeV (E_g ~ 1 GeV), which is absent for the proton.
Measured value of the quasi-free eta cross section off protons and neutrons as a function of incident photon energy.
Ratio of the measured quasi-free neutron to proton cross sections as a function of incident photon energy.
Measured angular distribution for an incident photon energy of 0.700 GeV.
The process $p\bar{p} \to \gamma$ + jet + X is studied using 1.0 $fb^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider at a center-of-mass energy $\sqrt{s}$=1.96 TeV. Photons are reconstructed in the central rapidity region |$y^{\gamma}$|< 1.0 with transverse momenta in the range 30<$p^{\gamma}_T$<400 GeV while jets are reconstructed in either the central |$y^{jet}$|< 0.8 or forward 1.5 <|$y^{jet}$|<2.5 rapidity intervals with $p^{jet}_T$> 15 GeV. The differential cross section $d^3\sigma/dp^{\gamma}_T dy^\gamma dy^{jet}$ is measured as a function of $p^{\gamma}_T$ in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for the region ABS(YRAP(JET)) 1.5 to 2.5 and YRAP(GAMMA)*YRAP(JET) > 0.
We present a measurement of the forward-backward charge asymmetry ($A_{FB}$) in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the $A_{FB}$ measurement to extract the effective weak mixing angle sin$^2\Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.)$.
Unfolded forward-backward asymmetry as a function of the di-electron mass.
The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
We measure the ttbar production cross section in ppbar collisions at sqrt{s}=1.96 TeV in the lepton+jets channel. Two complementary methods discriminate between signal and background, b-tagging and a kinematic likelihood discriminant. Based on 0.9 fb-1 of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma_ttbar=7.62+/-0.85 pb, assuming the current world average m_t=172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top quark mass of 170+/-7 GeV.
The combined result for the TOP TOPBAR production cross section at top quark mass of 175 GeV.. The second DSYS error is the uncertainty on the luminosity.
The cross section for TOP TOPBAR production at the world average top quark mass of 172.6 GeV.. Errors contain both statistics and systematics.