Using data recorded by the CLEO-II detector at CESR, we report the first observation of a narrow state decaying into $\Xi_c~+\pi~-$. The state has mass difference $M(\Xi_c~+\pi~-)-M(\Xi_c~+)$ of $178.2\pm0.5\pm1.0$ $\rm{MeV/c~2}$, and a width of $<5.5$ $\rm{MeV/c~2}$ (90\% confidence level limit). The most likely explanation of this new state is that it is the $J=\32$ spin excitation of the $\Xi_c~0$ charmed baryon.
No description provided.
We report the observation of the Cabibbo-suppressed decays \lcpkk\ and \lcpphi\ using data collected with the CLEO II detector at CESR. The latter mode, observed for the first time with significant statistics, is of interest as a test of color-suppression in charm decays. We have determined the branching ratios for these modes relative to \lcpkpi\ and compared our results with theory.
Branching ratio of Cabibbo-suppressed and resolved modes.
Using a sample of about 1.46 million hadronic Z decays collected between 1991 and 1993 with the ALEPH detector at LEP, the energy distribution of the B 0 and B ± mesons produced at the Z resonance is measured by reconstructing semileptonic decays B → ℓ ν ℓ D(X) or B → ℓν ℓ D ∗+ (X) . The charmed mesons are reconstructed through the decay modes D 0 → K − π + , D 0 → K − π + π − π + , D + → K − π + π + and D ∗+ → D 0 π + . The neutrino energy is estimated from the missing energy in the lepton hemisphere. Accounting for B ∗ and B ∗∗ production, the shape of the scaled energy distribution x E (b) for mesons containing a b quark is compared to the predictions of different fragmentation models. The mean value of x E (b) is found to be 〈 x E (b) 〉 = 0.715 ± 0.007(stat) ± 0.013(syst).
SIG/SIG(C=ALL-X-INTERVAL) is fraction of events in bin. Third and fourth systematic errors are due to variation of D** and B** contributions respectively (model dependent, see text).
The production of Δ ++ baryons has been measured using 3.5 million hadronic Z 0 decays collected with the OPAL detector at LEP. The production rate and fragmentation function are presented. A total of 0.22 ± 0.04 ± 0.04 Δ ++ + ( Δ ) −− per hadronic Z 0 decay is observed. The fragmentation function is found to be softer than that predicted by the JETSET and HERWIG Monte Carlo event generators. With this measurement of Δ ++ production, at least one baryon of each strangeness level in the lightest baryon decuplet has now been measured at LEP.
No description provided.
Rates for gamma + 1 jet.
Rates for gamma + 2 jet.
Rates for gamma + 3 jet.
A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
Data on the inclusive production of the neutral vector mesonsρ 0(770),ω(782), K*0(892), andφ(1020) in hadronic Z decays recorded with the ALEPH detector at LEP are presented and compared to Monte Carlo model predictions. Bose-Einstein effects are found to be important in extracting a reliable value for theρ 0 production rate. An averageρ 0 multiplicity of 1.45±0.21 per event is obtained. Theω is detected via its three pion decay modeω→π + π − π 0 and has a total rate of 1.07±0.14 per event. The multiplicity of the K*0 is 0.83±0.09, whilst that of theφ is 0.122±0.009, both measured using their charged decay modes. The measurements provide information on the relative production rates of vector and pseudoscalar mesons, as well as on the relative probabilities for the production of hadrons containing u, d, and s quarks.
No description provided.
Average multiplicity per hadronic event. Extrapolation to the full X range.
No description provided.
None
Upper limit at the 95% C.L.
A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .
No description provided.
The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.
SIG*Br(UPSI --> MU+ MU-).
SIG*Br(UPSI --> MU+ MU-).
SIG*Br(UPSI --> MU+ MU-).