Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 032, 2018.
Inspire Record 1635889 DOI 10.17182/hepdata.80167

This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13 TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb$^{-1}$. The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7 TeV respectively.

6 data tables

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the towards ($\Delta\phi< 60^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the transverse ($60^{\circ} <\Delta\phi< 120^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

Unfolded distributions of particle density in Z events, as a function of $p_{T}^{\mu\mu}$ in the away ($\Delta\phi> 120^{\circ}$) region. Error bars represent the statistical and systematic uncertainties added in quadrature.

More…

Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 126, 2018.
Inspire Record 1635274 DOI 10.17182/hepdata.80608

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

33 data tables

The measured leading jet $p_{T}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured $E_{T}^{miss}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured leading jet $p_{T}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Measurement of the inclusive $\mathrm{t}\overline{\mathrm{t}}$ cross section in pp collisions at $\sqrt{s} =$ 5.02 TeV using final states with at least one charged lepton

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2018) 115, 2018.
Inspire Record 1635271 DOI 10.17182/hepdata.81690

The top quark pair production cross section ($\sigma_{\mathrm{t}\overline{\mathrm{t}}}$) is measured for the first time in pp collisions at a center-of-mass energy of 5.02 TeV. The data were collected by the CMS experiment at the LHC and correspond to an integrated luminosity of 27.4 pb$^{-1}$. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is $ \sigma_{\mathrm{t}\overline{\mathrm{t}}} = 69.5 \pm 6.1$ (stat) $\pm 5.6$ (syst) $\pm 1.6$ (lumi) pb, with a total relative uncertainty of 12%. The result is in agreement with the expectation from the standard model. The impact of the presented measurement on the determination of the gluon distribution function is investigated.

15 data tables

The measured fiducial cross sections in the $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross sections based on the $\ell$+jets (left), $\rm{e}^\pm \mu^\mp$ (middle) and $\mu^\pm \mu^\mp$ (right) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross section in the combined $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The weights of the individual measurements are 81.8% for $\ell$+jets, 13.5% for $\rm{e}^\pm \mu^\mp$, and 4.7% for $\mu^\pm \mu^\mp$ channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

More…

Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 195, 2018.
Inspire Record 1634970 DOI 10.17182/hepdata.79952

Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb$^{-1}$ recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-${k_t}$ algorithm with a radius parameter value of $R=0.4$. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to $|y|=3$. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within $|y|<3$, $y*$, up to $y*=3$. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.4

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.4

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.4

More…

Measurement of associated Z + charm production in proton-proton collisions at $\sqrt{s} = $ 8 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 287, 2018.
Inspire Record 1634835 DOI 10.17182/hepdata.85868

A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with $p_{\rm T}^{\ell} > $ 20 GeV, ${|\eta^{\ell}|} < $ 2.1, 71 $ < m_{\ell\ell} < $ 111 GeV, and heavy flavour jets with $p_{\rm T}^{{\rm jet}} > $ 25 GeV and ${|\eta^{{\rm jet}}|} < $ 2.5. The Z + c production cross section is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) {\cal B}(\mathrm{Z} \rightarrow \ell^+\ell^-) = $ 8.8 $ \pm $ 0.5 (stat) $ \pm $ 0.6 (syst) pb. The ratio of the Z + c and Z + b production cross sections is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) / \sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{b} + \mathrm{X}) = $ 2.0 $ \pm $ 0.2 (stat) $ \pm $ 0.2 (syst). The Z + c production cross section and the cross section ratio are also measured as a function of the transverse momentum of the Z boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.

28 data tables

Signal yields N(Z+c) and N(Z+b), efficiency*acceptance correction factors C(Z+c) and C(Z+b), cross section sigma(Z+c)B and cross section ratios sigma(Z+c)/sigma(Z+b) in the three categories (semileptonic, D+-, D*) and in the two Z boson decay channels (e+e-, mu+mu-). The factors that correct the acceptance and selection inefficiencies are also given. They include the relevant branching fraction for the corresponding channel. All uncertainties quoted in the table are statistical, except for those of the measured cross sections and cross section ratios where the first uncertainty is statistical and the second is the estimated systematic uncertainty

Z+c and Z+b signal yields, differential cross section dsigma(Z+c)/dpTZ times branching ratio and differential cross sections ratio dsigma(Z+c)/dpTZ / dsigma(Z+b)/dpTZ for three ranges of the transverse momentum of the Z boson in the semileptonic mode

Z+c and Z+b signal yields, differential cross section dsigma(Z+c)/dpTZ times branching ratio and differential cross sections ratio dsigma(Z+c)/dpTZ / dsigma(Z+b)/dpTZ for three ranges of the transverse momentum of the jet in the semileptonic mode

More…

Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 032009, 2018.
Inspire Record 1634253 DOI 10.17182/hepdata.79809

A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum ($p_\mathrm{T}^\text{miss}$). The search uses proton-proton collision data at $\sqrt{s}=$ 13 TeV amounting to 35.9 fb$^{-1}$ of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant $\mathrm{t}\overline{\mathrm{t}}$ background with requirements on $p_\mathrm{T}^\text{miss}$ and transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeV and on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

49 data tables

Figure 2 (left). Distribution of $M_{T2}(ll)$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

Figure 2 (center). Distribution of $M_{T2}(blbl)$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

Figure 2 (right). Distribution of $p_{T}^{miss}$ in simulation after preselection and requiring $M_{T2}(ll) > 100$ GeV.

More…

Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $\sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 291, 2018.
Inspire Record 1633763 DOI 10.17182/hepdata.82304

A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at $\sqrt{s} = $ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.

9 data tables

Expected event yields in each $p_{\mathrm{T}}^{\mathrm{miss}}$ bin for the sum of background processes in the signal region (SR). The background yields and their corresponding uncertainties are obtained after performing a fit to data. Two sets of background yields are reported: one from a background-only fit to data in both the SR and the control regions (CRs), and one from a fit to data in all CRs, but excluding data in the SR. The observed numbers of events in each bin are also included. The last bin includes overflow.

Limit on the signal strength of the DM signal in a simplified model with a vector mediator.

Limit on the signal strength of the DM signal in a simplified model with an axial-vector mediator.

More…

Search for dark matter produced in association with bottom or top quarks in $\sqrt{s}$ = 13 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 18, 2018.
Inspire Record 1633591 DOI 10.17182/hepdata.80080

A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 $fb^{-1}$ of proton-proton collision data recorded by the ATLAS experiment at $\sqrt{s}$ = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.

63 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Systematic uncertainties:</b> <a href="80080?version=1&table=Table2">table</a><br/><br/> <b>Fit results:</b> <a href="80080?version=1&table=Table3">SRb1 and SRb2</a> <a href="80080?version=1&table=Table4">SRt1, SRt2 and SRt3</a><br/><br/> <b>Upper limits:</b> <a href="80080?version=1&table=Table5">table</a><br/><br/> <b>SR distributions:</b> <ul> <li><a href="80080?version=1&table=Table6">SRb1: $E_{\mathrm T}^{\mathrm{miss}}$</a> <li><a href="80080?version=1&table=Table7">SRb2: $\cos{\theta}^*_{bb}$</a> <li><a href="80080?version=1&table=Table8">SRt1: $m_{\mathrm T}^{\mathrm{b,min}}$</a> <li><a href="80080?version=1&table=Table9">SRt2: $E_{\mathrm T}^{\mathrm{miss,sig}}$</a> <li><a href="80080?version=1&table=Table10">SRt3: $\xi^{+}_{\ell\ell}$</a> <li><a href="80080?version=1&table=Table34">SRb1: jet $p_{T}$</a> <li><a href="80080?version=1&table=Table35">SRb2: $H_{\mathrm T}^{ratio}$</a> <li><a href="80080?version=1&table=Table36">SRt1: $\Delta R_{bb}$</a> <li><a href="80080?version=1&table=Table37">SRt2: $M_{\mathrm T}^{b,min}$</a> <li><a href="80080?version=1&table=Table38">SRt3: $\Delta \phi_{boost}$</a> </ul> <b>Exclusion limits:</b> <ul> <li>Scalar SRb2 <a href="80080?version=1&table=Table11">expected</a> <a href="80080?version=1&table=Table12">observed</a> <li>Scalar SRt1/SRt2 <a href="80080?version=1&table=Table13">expected</a> <a href="80080?version=1&table=Table14">observed</a> <li>Scalar SRt3 <a href="80080?version=1&table=Table15">expected</a> <a href="80080?version=1&table=Table16">observed</a> <li>Pseudo-scalar SRb2 <a href="80080?version=1&table=Table17">expected</a> <a href="80080?version=1&table=Table18">observed</a> <li>Pseudo-scalar SRt1/SRt2 <a href="80080?version=1&table=Table19">expected</a> <a href="80080?version=1&table=Table20">observed</a> <li>Pseudo-scalar SRt3 <a href="80080?version=1&table=Table21">expected</a> <a href="80080?version=1&table=Table22">observed</a> <li>Scalar, SRt1/SRt2 vs DM mass <a href="80080?version=1&table=Table23">expected</a> <a href="80080?version=1&table=Table24">observed</a> <li>Scalar, SRt3 vs DM mass <a href="80080?version=1&table=Table25">expected</a> <a href="80080?version=1&table=Table26">observed</a> <li>Pseudo-scalar, SRt1/SRt2 vs DM mass <a href="80080?version=1&table=Table27">expected</a> <a href="80080?version=1&table=Table28">observed</a> <li>Pseudo-scalar, SRt3 vs DM mass <a href="80080?version=1&table=Table29">expected</a> <a href="80080?version=1&table=Table30">observed</a> <li>Colour-charged scalar mediators ($b-$FDM) <a href="80080?version=1&table=Table32">expected</a> <a href="80080?version=1&table=Table33">observed</a> </ul> <b>Direct detection plot:</b> <a href="80080?version=1&table=Table31">table</a><br/><br/> <b>Acceptances:</b> <ul> <li><a href="80080?version=1&table=Table39">SRb1</a> <li><a href="80080?version=1&table=Table41">SRb2 scalar</a> <li><a href="80080?version=1&table=Table44">SRb2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table45">SRt2 scalar</a> <li><a href="80080?version=1&table=Table46">SRt1 scalar</a> <li><a href="80080?version=1&table=Table49">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table50">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table53">SRt3 scalar</a> <li><a href="80080?version=1&table=Table55">SRt3 pseudo-scalar</a> </ul> <b>Efficiencies:</b> <ul> <li><a href="80080?version=1&table=Table40">SRb1</a> <li><a href="80080?version=1&table=Table42">SRb2 scalar</a> <li><a href="80080?version=1&table=Table43">SRb2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table47">SRt2 scalar</a> <li><a href="80080?version=1&table=Table48">SRt1 scalar</a> <li><a href="80080?version=1&table=Table51">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table52">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table54">SRt3 scalar</a> <li><a href="80080?version=1&table=Table56">SRt3 pseudo-scalar</a> </ul> <b>Cutflows:</b> <ul> <li><a href="80080?version=1&table=Table57">SRb1</a> <li><a href="80080?version=1&table=Table58">SRb2</a> <li><a href="80080?version=1&table=Table59">SRt1 scalar</a> <li><a href="80080?version=1&table=Table60">SRt2 scalar</a> <li><a href="80080?version=1&table=Table61">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table62">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table63">SRt3</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

Summary of the main systematic uncertainties and their impact on the total SM background prediction in each of the signal regions studied. A range is shown for the four bins composing SRb2 . The total systematic uncertainty can be different from the sum in quadrature of individual sources due to the correlations between them resulting from the fit to the data. The quoted theoretical uncertainties include modelling and cross-section uncertainties.

Fit results in SRb1 and SRb2 for an integrated luminosity of $36.1 fb^{-1}$. The background normalisation parameters are obtained from the background-only fit in the CRs and are applied to the SRs. Small backgrounds are indicated as Others. The dominant component of these smaller background sources in SRb1 is di-boson processes. Benchmark signal models yields are given for each SR. The uncertainties on the yields include all systematic uncertainties.

More…

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

20 data tables

Figure 8. The 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which |mStop−mLSP−mTop|≤ 25 GeV and mStop≤ 275 GeV because signal events are essentially indistinguishable from SM ttbar events in this region, rendering the signal event acceptance difficult to model.

Figure 8. Observed exclusion region at 95% CL assuming 100% branching fraction.

Figure 8. Expected exclusion region at 95% CL assuming 100% branching fraction.

More…