Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=1&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=1&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=1&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 146, 2021.
Inspire Record 1843269 DOI 10.17182/hepdata.97160

A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.

25 data tables

Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

More…

Version 2
Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 600, 2021.
Inspire Record 1839446 DOI 10.17182/hepdata.97041

The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.

608 data tables

Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.

More…

Search for dark matter produced in association with a single top quark in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 860, 2021.
Inspire Record 1831036 DOI 10.17182/hepdata.99906

This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.

71 data tables

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.

More…

Version 2
Search for displaced leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 127 (2021) 051802, 2021.
Inspire Record 1831504 DOI 10.17182/hepdata.98796

A search for charged leptons with large impact parameters using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton-partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon and stau masses up to 720 GeV, 680 GeV, and 340 GeV are respectively excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

92 data tables

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$e\mu$ for 2 representative signal points. For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

More…

Search for charged-lepton-flavour violation in $Z$-boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Nature Phys. 17 (2021) 819 819-825, 2021.
Inspire Record 1821688 DOI 10.17182/hepdata.96390

The ATLAS experiment at the Large Hadron Collider reports a search for charged-lepton-flavour violation in decays of $Z$ bosons into a τ lepton and an electron or muon of opposite charge.

9 data tables

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

More…

Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2021) 050, 2021.
Inspire Record 1811464 DOI 10.17182/hepdata.95747

This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses $2.2$ nb$^{-1}$ of integrated luminosity collected in 2015 and 2018 at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\mathrm{T}}^{\gamma} > 2.5$ GeV, pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass $m_{\gamma\gamma} > 5$ GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6-100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval.

11 data tables

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

Measured normalised differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line).

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton $|cos(\theta*)|$ are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

More…

Test of the universality of $\tau$ and $\mu$ lepton couplings in $W$-boson decays from $t\bar{t}$ events with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Nature Phys. 17 (2021) 813-818, 2021.
Inspire Record 1885958 DOI 10.17182/hepdata.100232

The Standard Model of particle physics encapsulates our current best understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the rate of decay of $W$ bosons to $\tau$-leptons and muons, $R(\tau/\mu) = B(W \to \tau \nu_\tau)/B(W \to \mu \nu_\mu)$, constitutes an important test of this axiom. A measurement of this quantity with a novel technique using di-leptonic $t\bar{t}$ events is presented based on 139 fb${}^{-1}$ of data recorded with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV. Muons originating from $W$ bosons and those originating from an intermediate $\tau$-lepton are distinguished using the lifetime of the $\tau$-lepton, through the muon transverse impact parameter, and differences in the muon transverse momentum spectra. The value of $R(\tau/\mu)$ is found to be $0.992 \pm 0.013 [\pm 0.007 (stat) \pm 0.011 (syst)]$ and is in agreement with the hypothesis of universal lepton couplings as postulated in the Standard Model. This is the most precise measurement of this ratio, and the only such measurement from the Large Hadron Collider, to date.

7 data tables

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $e-\mu$ channel.

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $\mu-\mu$ channel.

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $10<p_{\textrm{T}}^{\mu}<20$ GeV selection in the $e-\mu$ channel.

More…

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$\ell$ decay channel at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 942, 2020.
Inspire Record 1790439 DOI 10.17182/hepdata.94312

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.

76 data tables

Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.

Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.

The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.

More…

Study of Jet Shapes in Inclusive Jet Production in pp Collisions at sqrt(s) = 7 TeV using the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052003, 2011.
Inspire Record 882984 DOI 10.17182/hepdata.63511

Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.

124 data tables

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.

More…

Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052005, 2011.
Inspire Record 882463 DOI 10.17182/hepdata.57465

A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

3 data tables

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.


Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurement of the W -> lnu and Z/gamma* -> ll production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
JHEP 12 (2010) 060, 2010.
Inspire Record 872570 DOI 10.17182/hepdata.56744

First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.

35 data tables

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.

Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.


Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Eur.Phys.J.C 71 (2011) 1512, 2011.
Inspire Record 871366 DOI 10.17182/hepdata.56004

Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

26 data tables

Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…