Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

113 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton spin structure function g1(x,Q**2) for Q**2 from 0.15-GeV**2 to 1.6-GeV**2 with CLAS.

The CLAS collaboration Fatemi, R. ; Skabelin, A.V. ; Burkert, V.D. ; et al.
Phys.Rev.Lett. 91 (2003) 222002, 2003.
Inspire Record 621221 DOI 10.17182/hepdata.41917

Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.

8 data tables

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.

The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive spin structure functions of the deuteron with CLAS.

The CLAS collaboration Yun, J. ; Kuhn, S.E. ; Dodge, G.E. ; et al.
Phys.Rev.C 67 (2003) 055204, 2003.
Inspire Record 604799 DOI 10.17182/hepdata.41972

We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.

7 data tables

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.

More…