Date

Measurement of the production cross-section of $J/\psi$ and $\psi(2$S$)$ mesons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 169, 2024.
Inspire Record 2705040 DOI 10.17182/hepdata.145071

Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.

9 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Observation of the B$_\mathrm{c}^+$ meson in PbPb and pp collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 252301, 2022.
Inspire Record 2006858 DOI 10.17182/hepdata.111309

The $B_\mathrm{c}^+$ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the $B_\mathrm{c}^+$ meson in lead-lead (PbPb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV, via the $B_\mathrm{c}^+ \to (J/\psi\to\mu^+\mu^-)\mu^+\nu_\mu$ decay. The $B_\mathrm{c}^+$ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The B$_\mathrm{c}^+$ meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.

3 data tables

The $B_c$ meson production (pp-equivalent) cross-section times branching fraction of the $B_c\rightarrow (J/\psi \rightarrow \mu\mu) \mu \nu_{\mu}$ decay in pp and PbPb collisions. The used kinematic variables correspond to those of the trimuon final state. The two $p_T$ bins correspond to different rapidity ranges. The total uncertainty is decomposed in an uncertainty from the fit and one representing all other sources. The markers of the $p_T^{\mu\mu\mu}$ bins are placed according to the Lafferty-Wyatt prescription.

The $B_c$ meson nuclear modification factor in PbPb collisions, in $p_T^{\mu\mu\mu}$ bins corresponding to different trimuon rapidity ranges. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The markers of the $p_T^{\mu\mu\mu}$ bins are placed at the average of the Lafferty-Wyatt prescriptions applied to the pp and PbPb spectra.

The $B_c$ meson nuclear modification factor in PbPb collisions, in centrality bins, integrated over the studied kinematic range. The cut on the trimuon rapidity depends on the trimuon $p_T$. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The centrality bin markers are placed at the minimum bias average number of participants $N_{part}$.


Study of $\Upsilon$ production in $p$Pb collisions at $\sqrt{s_{NN}}=8.16$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 11 (2018) 194, 2018.
Inspire Record 1699106 DOI 10.17182/hepdata.93070

The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.

17 data tables

$\Upsilon(1S)$ production cross-section in $p$Pb, as a function of $p_{T}$ and $y*$. The uncertainty is the sum in quadrature of the statistical and systematic components.

$\Upsilon(1S)$ production cross-section in Pb$p$, as a function of $p_{T}$ and $y^*$. The uncertainty is the sum in quadrature of the statistical and systematic components.

$\Upsilon(1S)$ production cross-section in $p$Pb and Pb$p$, as a function of $p_{T}$. The uncertainty is the sum in quadrature of the statistical and systematic components.

More…

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 790 (2019) 108-128, 2019.
Inspire Record 1673184 DOI 10.17182/hepdata.84819

Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.

35 data tables

The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…

Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945

We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

4 data tables

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Measured absolute double differential fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Covariance matrix of total experimental uncertainties (statistical and systematic uncertainties added in quadrature) of double differential fiducial cross section normalised to the inclusive fiducial cross section. The bin index is PT_i + 10*y_j.

More…

Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 072302, 2015.
Inspire Record 1326911 DOI 10.17182/hepdata.66021

Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.

46 data tables

The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…

Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s}=7$ TeV using 4.5 fb$^{-1}$ of data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 02 (2015) 153, 2015.
Inspire Record 1325553 DOI 10.17182/hepdata.69343

The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.

12 data tables

Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

More…

Measurement of the inclusive jet cross section in pp collisions at sqrt(s)=2.76 TeV and comparison to the inclusive jet cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2509, 2013.
Inspire Record 1228693 DOI 10.17182/hepdata.61627

The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.

42 data tables

The measured inclusive jet double-differential cross section in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.3 <= |y| < 0.8 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.8 <= |y| < 1.2 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

More…

Measurement of inclusive jet and dijet production in $pp$ collisions at $\sqrt{s}=7$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 014022, 2012.
Inspire Record 1082936 DOI 10.17182/hepdata.58163

Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading order QCD calculations corrected for non-perturbative effects, as well as to next-to-leading order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained.

32 data tables

Inclusive jet PT distribution for the |y| range 0.0-0.3 and R=0.4.

Inclusive jet PT distribution for the |y| range 0.3-0.8 and R=0.4.

Inclusive jet PT distribution for the |y| range 0.8-1.2 and R=0.4.

More…

Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 84 (2011) 054001, 2011.
Inspire Record 919017 DOI 10.17182/hepdata.57743

Jets are identified and their properties studied in center-of-mass energy sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.

104 data tables

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.0-0.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.5-1.0, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 1.0-1.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

More…